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Abstract

Many problems in RL, such as meta-RL, robust
RL, generalization in RL, and temporal credit as-
signment, can be cast as POMDPs. In theory,
simply augmenting model-free RL with memory-
based architectures, such as recurrent neural net-
works, provides a general approach to solving
all types of POMDPs. However, prior work has
found that such recurrent model-free RL meth-
ods tend to perform worse than more specialized
algorithms that are designed for specific types
of POMDPs. This paper revisits this claim. We
find that careful architecture and hyperparameter
decisions can often yield a recurrent model-free
implementation that performs on par with (and
occasionally substantially better than) more so-
phisticated recent techniques. We compare to 21
environments from 6 prior specialized methods
and find that our implementation achieves greater
sample efficiency and asymptotic performance
than these methods on 1821 environments. We
also release a simple and efficient implementation
of recurrent model-free RL for future work to use
as a baseline for POMDPs.

1. Introduction

Reinforcement learning (RL) is typically cast as a problem
of learning a single fully observable task (an MDP), training
and testing on that same task. However, most real-world
applications of RL demand some degree of transfer and
handling of partial observability. For example, visual navi-
gation (Zhu et al., 2017) requires that robots adapt to unseen
scenes with occlusion in observations, and human-robot col-
laboration requires that robots infer the intentions of human
collaborators (Chen et al., 2018).
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Figure 1: The importance of implementation for recurrent
model-free RL. This paper identifies important design deci-
sions for recurrent model-free RL. Our implementation outper-
forms prior implementations (e.g. PPO-GRU and A2C-GRU
from Kostrikov (2018)) and purpose-designed methods (e.g. VRM
from Han et al. (2020)) on their respective POMDP benchmarks.

Many subareas in RL study problems that are special cases
of POMDPs (see Table 1). For example, meta-RL (Schmid-
huber, 1987; Thrun & Pratt, 2012; Duan et al., 2016; Wang
et al., 2017) is a POMDP where certain aspects of the re-
ward function or (less commonly) dynamics function are
unobserved but held constant through one episode. The
robust RL problem (Bagnell et al., 2001; Rajeswaran et al.,
2017a; Pinto et al., 2017; Pattanaik et al., 2018) assumes
that certain aspects of the dynamics or reward function are
unknown, and aims to find optimal policies that perform
well against adversarially-chosen perturbations. General-
ization in RL (Whiteson et al., 2011; Zhang et al., 2018a;
Packer et al., 2018; Cobbe et al., 2019) focuses on unob-
served aspects of the dynamics or reward function that are
novel during testing, using an average-case objective instead
of the worst-case objective of robust RL. Temporal credit as-
signment (Sutton, 1984; Arjona-Medina et al., 2019; Hung
et al., 2018; Ren et al., 2021) assumes that the reward func-
tion is history-dependent and aims to learn to assign credits
of current actions to future rewards.

Recent work has proposed efficient and performant algo-
rithms to solve each of these specialized problem settings.
However, these algorithms often make assumptions that
preclude their application to other POMDPs. For example,
methods for robust RL are rarely used for generalization in
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RL due to objective mismatch (average-case versus worst-
case). Similarly, methods for meta-RL are rarely used for
temporal credit assignment due to the stationarity assump-
tion in meta-RL.

One method that is applicable to any POMDP is model-free
RL equipped with a recurrent policy (actor) and (sometimes)
recurrent value function (Duan et al., 2016; Wang et al.,
2017; Packer et al., 2018; Igl et al., 2018; Rakelly et al.,
2019; Fakoor et al., 2020; Yu et al., 2019). We will refer to
this approach as recurrent model-free RL. This baseline
is simultaneously simple, as it requires changing only a few
lines of code from a model-free RL algorithm, and gen-
eral, as RNNs (Elman, 1990) are Turing-complete (Siegel-
mann & Sontag, 1995) and universal function approxima-
tors (Schifer & Zimmermann, 2006).

This approach has been used as a baseline in many prior
works, but these prior works report that it performs poorly in
many problem settings, including meta-RL (Rakelly et al.,
2019; Zintgraf et al., 2020), general POMDPs (Igl et al.,
2018; Han et al., 2020), robust RL (Zhang et al., 2021),
generalization in RL (Packer et al., 2018), and temporal
credit assignment (Arjona-Medina et al., 2019; Raposo et al.,
2021). Why does recurrent model-free RL perform poorly?
One common explanation is that specialized algorithms or
more complicated memory architectures (Ritter et al., 2018;
Parisotto et al., 2020) (implicitly) encode inductive biases to
solve these specific tasks. For example, algorithms for meta-
RL may assume that the underlying dynamics (while un-
known) are fixed, and the underlying goals are fixed within
one episode (Rakelly et al., 2019; Zintgraf et al., 2020).
Similarly, algorithms for robust RL may assume that the
dynamics parameters are known (Rajeswaran et al., 2017a)
and dynamics is Lipschitz continuous (Jiang et al., 2021).
Algorithms for temporal credit assignment sometimes as-
sume that the history-dependent reward can be decomposed
into a sum of Markovian rewards (Ren et al., 2021).

This paper challenges the claim that recurrent model-free
RL performs poorly. We argue that, contrary to popular
belief, recurrent model-free RL can be competitive with
recent state-of-the-art algorithms across a range of differ-
ent POMDP settings. Similar to the spirit in prior work
in Markovian PPO (Engstrom et al., 2020; Andrychowicz
et al., 2021) and recurrent DQN (Kapturowski et al., 2019),
our experiments show that the implementation of recurrent
model-free RL matters. Through extensive experiments
(e.g., Fig. 1 shows results on an occluded locomotion bench-
mark), we show that the careful design and implementation
of recurrent model-free RL is critical to its performance.
Design decisions such as the actor-critic architecture, the
underlying model-free RL algorithm, and context length in
RNNss are especially important.

The main contribution of this paper is a performant imple-

mentation of recurrent-model free RL. We demonstrate that
simple yet important design decisions, such as the underly-
ing RL algorithm and the context length, can often yield a
recurrent model-free RL algorithm that performs (at least)
on par with prior specialized POMDP algorithms on the
benchmarks those algorithms were designed to solve. Ab-
lation experiments identify the importance of these design
decisions. We have released the code that is easy to use and
memory-efficient.

2. Background

MDP. A Markov decision process (MDP) (Bellman, 1957)
isatuple (S, A, T, Ty, R, H,~) , where § is the set of states,
A is the set of actions, T : § x A x § — [0, 1] is the tran-
sition function (dynamics), Ty : S — [0, 1] is the initial
state distribution, R : S x A x S — R is the reward func-
tion, H € N is the time horizon, and v € [0,1) is the
discount factor. Solving an MDP requires learning a policy
7 : S x A — [0,1] that maximizes the expected discounted
ook H-1 ¢
return: 7% = argmax, Eq, o, ri~ntor | Doieo V' Te41 | So|-
For any MDP, there exists an optimal policy that is memo-
ryless (Puterman, 2014). MaxEnt RL algorithms (Ziebart,
2010; Haarnoja et al., 2018a) add an entropy bonus to the
RL objective.

POMDP. A partially observable Markov deci-
sion process (POMDP) (Astrom, 1965) is a tuple
(S, A,0,T,Ty,0,00,R,H,~), where the underlying
process is an MDP (S, A, T, Ty, R, H,7). Let O be the
set of observations and let O : S x A x O — [0,1] be
the emission function. Let the observable trajectory up to
time-step ¢ be 79+ = (00, a0,01,71,...,0:-1,0¢,7¢), the
memory-based policy in the most general form is defined as
m(a¢ | To:t), conditioning on the whole history. At the first
time step ¢ = 0, an initial state so ~ Tp(-) and an initial
observation og ~ Oq (- | s9) are sampled. At any time-step
t € {0,..., H — 1}, the policy emits the action a; € A
to the system, the system updates the state following the
dynamics, s;4+1 ~ T'(- | st,at), the next observation is
sampled 0,41 ~ O(- | 441, a;) and the reward is computed
as g1 = R(St, ag, St+1).

We refer to the part of the state s; at current time-step ¢
that can be directly unveiled from current observation o; as
the observable state s{, and the rest part of the state as the
hidden state s'. We call the hidden state s} stationary if it
does not change within an episode. The average-case and
worst-case objectives for POMDPs can be written as:

max Egn.p,
™

H-1
E, [Z vtrtﬂ | shH (average-case)
t=0

max min [E,
™ shesupp(To)

H—1
Z Yregn | shl (worst-case)
t=0
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3. Related Work

We discuss subareas of RL that explicitly or implicitly solve
POMDPs, as well as algorithms proposed for these special-
ized settings. Table 1 summarizes these subareas.

RL for “standard” POMDPs. We use the term “stan-
dard” to refer to prior work that explicitly labels the prob-
lems studied as POMDPs. Common tasks include scenar-
ios where the states are partially occluded (Heess et al.,
2015), different states correspond to the same observation
(perceptual aliasing (Whitehead & Ballard, 1990)), random
frames are dropped (Hausknecht & Stone, 2015), obser-
vations use egocentric images (Zhu et al., 2017), or the
observations are perturbed with random noise (Meng et al.,
2021). These POMDPs often have hidden states that are
non-stationary and affect both the rewards and the dynamics.
POMDPs are hard to solve because of the curse of dimen-
sionality: the size of the history grows linearly with the
horizon length (Papadimitriou & Tsitsiklis, 1987; Littman,
1996). Prior POMDP algorithms (Cassandra et al., 1994)
attempt to infer the state from the past sequence of ob-
servations, and then apply standard RL techniques to that
inferred state. Such an inferred state is known as a belief
state (Kaelbling et al., 1998). However, exact inference
requires the knowledge of the dynamics, emission proba-
bilities, and reward functions, and is intractable in all ex-
cept the most simple settings. One strategy for solving
these general POMDPs is to use memory-based policies,
which take the entire history of past observations as inputs.
Among the memory architectures, RNNs have been widely
used to equip RL algorithms (Schmidhuber, 1991; Bakker,
2001; Wierstra et al., 2007), as they have a simpler design
without losing the expressivity (Schifer & Zimmermann,
2006), compared to more complicated ones, e.g. external
memory (Graves et al., 2016; Oh et al., 2016) and episodic
memory (Fortunato et al., 2019; Zhu et al., 2020). These
recurrent RL strategies can be further subdivided into model-
free methods (Heess et al., 2015; Hausknecht & Stone, 2015;
Mirowski et al., 2017; Meng et al., 2021), where the single
objective is to maximize the return, and model-based meth-
ods (Watter et al., 2015; Ha & Schmidhuber, 2018; Igl et al.,
2018; Zhang et al., 2018c; Espeholt et al., 2018; Gregor
et al., 2019; Hafner et al., 2019; Han et al., 2020; Lee et al.,
2020a).that have explicitly inferred the belief state and pass
it as an additional input to a memoryless policy. The recur-
rent model-free RL that we focus on belongs to the class of
model-free, off-policy, memory-based algorithms.

Meta-RL. Meta-RL, also called “learning to
learn” (Schmidhuber, 1987; Thrun & Pratt, 2012),
focuses on POMDPs where some parameters in the rewards
or (less commonly) dynamics are varied from episode to
episode, but remain fixed within a single episode (Humplik

et al., 2019). These different values of these parameters
represent different tasks. The meta-RL setting is almost
the same as multi-task RL (Wilson et al., 2007; Yu et al.,
2019), but differs in that multi-task RL can observe the
task parameters, making it an MDP instead of a POMDP.
Algorithms for meta-RL can be roughly categorized based
on how the adaptation step is performed. Gradient-based
algorithms (Hochreiter et al., 2001; Finn et al., 2017;
Fakoor et al.,, 2020) perform adaptation by running a
few gradient steps on the pre-trained models. Memory
or context-based algorithms use memory architectures to
implicitly adapt. These memory-based methods which
can be further subdivided into implicit and explicit task
inference methods. Implicit task inference methods (Wang
et al., 2017; Duan et al., 2016; Ritter et al., 2018; Espeholt
et al., 2018; Parisotto et al., 2020) use an RL objective only
to learn memory-based policies. Explicit task inference
methods (Zintgraf et al., 2020; Rakelly et al., 2019) train
an extra inference model to estimate task embeddings
(i.e., a representation of the unobserved parameters) by
approximate inference. Task embeddings are then used as
additional inputs to memoryless policies.

Robust RL. The goal of robust RL is to find a policy that
maximizes returns in the worst-case environments. Prior
work designs deep RL algorithms that are robust against per-
turbations to the dynamics (Khalil et al., 1996; Bagnell et al.,
2001; Nilim & Ghaoui, 2005; Morimoto & Doya, 2005; Der-
man et al., 2018; Rajeswaran et al., 2017a; Mankowitz et al.,
2020; Jiang et al., 2021), observations (Lin et al., 2017; Pat-
tanaik et al., 2018; Huang et al., 2017; Wang et al., 2019),
and actions (Pinto et al., 2017; Gleave et al., 2020; Tessler
et al., 2019). Treating the robust RL problem as a POMDP,
rather than an MDP (as done in most prior work), unlocks a
key capability: using memory to identify the hidden state
within a single episode. While some work find memory-
based policies are more robust to adversarial attacks than
Markovian policies (Russo & Proutiere, 2021; Zhang et al.,
2021), they train these baselines in a single MDP without
adversaries. In contrast, we will train recurrent model-free
RL on a distribution of MDPs.

Generalization in RL. The goal of generalization in RL
is to make RL algorithms perform well in test domains
that are unseen during training. This setting differs from
robust RL because it uses an average-case objective in-
stead of a worst-case objective. In this sense, meta-RL
is closely related to (in-distribution) generalization in RL.
Prior work has studied generalization to initial states in
the same MDP (Whiteson et al., 2011; Rajeswaran et al.,
2017b; Zhang et al., 2018b), to random disturbance in dy-
namics (Rajeswaran et al., 2017b), states (Stulp et al., 2011),
observations (Zhang et al., 2018a; Song et al., 2020), and
actions (Srouji et al., 2018), and to different modes in proce-
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Table 1: Summary of selected POMDP subareas. For each subarea, we indicate whether the hidden state s" determines the dynamics
or the reward function, and whether it changes within an episode. We indicate the typical inputs to the agent: observations, actions,
rewards, and done signals. We indicate whether the subarea uses the average-case or worst-case objective, and whether the evaluation

typically includes domain shift. A “*” indicates that some prior work violates the trend.

Subarea s" in dynamics? | s” in reward? | Is s” stationary? | Agent input RL objective | Domain shift?
“Standard” POMDP v v X oar Avg X

Meta-RL X* v v oard Avg X

Robust RL v# X* vF oa Worst X
Generalization in RL | /* X* F oa Avg vE

Temporal credit as- | X v X oa Avg X

signment

durally generated games (Justesen et al., 2018; Farebrother
et al., 2018; Cobbe et al., 2019). Among them, Packer
et al. (2018); Zhao et al. (2019) provide benchmarks on both
in-distribution and out-of-distribution generalization to dif-
ferent dynamics parameters. Algorithms for improving gen-
eralization in RL can be roughly divided into regularization-
based methods (Farebrother et al., 2018; Cobbe et al., 2020;
Igl et al., 2019), methods that use special model architec-
tures (Srouji et al., 2018; Raileanu & Fergus, 2021), and
methods that use data augmentation (Tobin et al., 2017; Lee
et al., 2020b). While randomizing the dynamics or observa-
tions implicitly transforms an MDP into a POMDP, these
prior methods normally use memoryless RL algorithms. By
contrast, we consider memory-based RL algorithms that can
adapt online for generalization (Kirk et al., 2021, Sec. 5.2).

Temporal credit assignment. POMDPs are sometimes
disguised as MDPs. For example, delaying the reward sig-
nals (Sutton, 1984; Arjona-Medina et al., 2019) can make an
MDP into a POMDP, as the rewards at current time still de-
pend on previous observations and/or actions, given current
observations. Similarly, when rewards are defined in terms
of trajectories (Liu et al., 2019; Ren et al., 2021) (episodic
rewards), the problem can likewise become a POMDP. Al-
gorithms to solve these problems belong to temporal credit
assignment subarea (Hung et al., 2018). While prior work
has applies recurrent model-free RL to these problem set-
tings, it has been reported with poor performance (Hung
et al., 2018; Liu et al., 2019; Arjona-Medina et al., 2019;
Raposo et al., 2021). Methods to tackle delayed rewards
include stacking recent observations to make the problems
as MDPs (Katsikopoulos & Engelbrecht, 2003), tuning the
discount factor (Fedus et al., 2019) and lambda in eligibility
traces (Xu et al., 2020) to increase effective horizons, and
using hindsight and counterfactuals to reduce the variance
of policy gradients (Harutyunyan et al., 2019; Mesnard et al.,
2021). A popular branch of specialized methods, is to learn
surrogate reward functions for efficient learning, e.g. return

decomposition into a sum of (dense) rewards (Liu et al.,
2019; Ren et al., 2021; Raposo et al., 2021), and reward re-
distribution across time (Hung et al., 2018; Arjona-Medina
et al., 2019; Ferret et al., 2020; Gangwani et al., 2020).

4. Design Considerations for Recurrent
Model-Free RL

Implementing a recurrent model-free RL algorithm requires
making a number of design decisions. In the following
paragraphs, we will describe the important decision factors
we find in recurrent model-free RL. Table 2 summarizes
how prior work and our work make these design decisions.

Recurrent (off-policy) actor-critic architecture. The
first important design decision is whether the recurrent pol-
icy (actor) and the recurrent Q-value function (critic) use
a shared RNN encoder (and embedders) or use separate
ones. In our experiments (Sec. 5.2), we show that a shared
encoder increases the gradient norm and hinders learning.
While recent work has adopted the design of separate en-
coders (Fakoor et al., 2020; Ding, 2019; Meng et al., 2021;
Sun et al., 2021; Weng et al., 2021), some implementations
of recurrent model-free RL use the (inferior) shared encoder.
After running some experiments to compare this design de-
cision, we will use the separate architecture in the rest of
the paper.

Agent inputs. The next consideration is the choice of in-
puts for the actor and critic. While prior work often only
conditions the recurrent RL baseline on previous observa-
tions (and actions) (Igl et al., 2018; Kostrikov, 2018; Han
et al., 2020; Ding, 2019; Meng et al., 2021; Yang & Nguyen,
2021), our experiments in Sec. 5.2 find that additionally con-
ditioning on other previous information, such as previous
rewards, can increase return by up to 30%. Table 1 shows
which inputs we found useful for which types of POMDPs.
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Table 2: How does prior work implement recurrent model-free RL? Almost no two prior methods implement recurrent model-free
RL in the same way. Most prior implementations made design choices that led to poor performance. The last rows show the design

decisions that we found to work best on each benchmark.

Algorithm Domain / Benchmark | Arch Encoder Inputs Len RL
Duan et al. (2016) Meta-RL separate  GRU oard 1000 TRPO, PPO
Wang et al. (2017) Meta-RL shared LSTM oart 5-150 A2C
Baseline in Rakelly et al. (2019) Meta-RL separate  GRU oard 100 PPO
Baseline in Zintgraf et al. (2020) Meta-RL separate  GRU oard Max  A2C, PPO
Baseline in Fakoor et al. (2020) Meta-RL separate  GRU oar 10-25 TD3
Baseline in Yu et al. (2019) Meta-RL separate  GRU oard 500 PPO
Kostrikov (2018) POMDP shared GRU o 5-2048 PPO, A2C
Ding (2019) POMDP separate LSTM  oa 150 TD3, SAC
Meng et al. (2021) POMDP separate LSTM  oa 1-5 TD3
Yang & Nguyen (2021) POMDP separate  both oa Max  TD3, SAC
Baseline in Igl et al. (2018) POMDP shared GRU oa 25 A2C
Baseline in Han et al. (2020) POMDP shared LSTM o 64 SAC
Baseline in Zhang et al. (2021) Robust RL separate LSTM o 100 PPO
Baseline 1 in Packer et al. (2018) Generalization in RL shared LSTM o 128-512 PPO, A2C
Baseline 2 in Packer et al. (2018) Generalization in RL separate LSTM oard 128-512 PPO, A2C
Baseline in Hung et al. (2018) Temporal credit assignment shared LSTM oar  Max A3C
Baseline in Liu et al. (2019) Temporal credit assignment separate  LSTM  oa Max PPO
Baseline in Raposo et al. (2021) Temporal credit assignment shared LSTM oar 10-60 IMPALA
Meta-RL (Dorfman et al., 2020) separate  LSTM oard 64 TD3
Meta-RL (Zintgraf et al., 2020) separate GRU oard Max SAC
Our work POMDP (Han et al., 2020) separate GRU oa 64 TD3
Robust RL (Jiang et al., 2021) separate LSTM o 64 TD3
Generalization in RL (Packer et al., 2018) separate LSTM o 64 TD3
Temporal credit assignment (Raposo et al., 2021) | separate LSTM o Max SAC-D

Model-free RL algorithm. Recurrent model-free RL can
be understood as applying an off-the-shelf model-free RL
algorithm with an actor and a Q function conditioned on
sequences of inputs. As such, the choice of the underly-
ing model-free RL algorithm is paramount. in While off-
policy algorithms such as TD3 (Fujimoto et al., 2018) and
SAC (Haarnoja et al., 2018a;b) improve sample efficiency
and asymptotic performance in continuous control tasks,
these RL algorithms are rarely used in recurrent model-free
RL baselines (Rakelly et al., 2019; Zintgraf et al., 2020;
Zhang et al., 2020). Our experiments show that using these
off-policy algorithms for recurrent model-free RL generally
works better than recurrent model-free RL implementations
that use on-policy algorithms. This result echoes the finding
that model-free off-policy TD3-Context (Fakoor et al., 2020)
can be better than the specialized method PEARL (Rakelly
et al., 2019) in meta-RL.

RNN variants and context length. RNN training is
known to be unstable, especially with long sequences in-
put (Bengio et al., 1994). RNN variants like LSTM (Hochre-
iter & Schmidhuber, 1997) and GRU (Chung et al., 2014)
can mitigate the training issues, but still may fail to learn
long-term dependencies (Trinh et al., 2018). We study two
design decisions here: the RNN architecture (LSTM, GRU)
and the context length, i.e. the length of sequence fed into

RNN for training. We find that the architecture has a minor
effect on the final performance (App. E.2). Prior POMDP
methods use context lengths ranging from 1 to 2048 (see
the “Len” column of Table 2), and we select three represen-
tatives of short (5), medium (64), and long length (larger
than 100) in the experiments for comparison. We find that
the optimal context length is task-specific (Sec. 5.2). For
example, a POMDP that hides velocities from observations
theoretically only requires a short context length to infer
velocities through consecutive positions (Meng et al., 2021).

5. Experiments

Our experiments aim to answer two questions. First, how
does a well-tuned implementation of recurrent model-free
RL compare to specialized POMDP methods? To give these
prior methods the strongest possible footing, we perform the
comparison on the benchmarks used by these prior methods.
Second, which design decisions are essential for recurrent
model-free RL? We put the environment details in App. D.

Code implementation. We release a modular and config-
urable implementation of recurrent (off-policy) model-free
RL in the supplementary material. Our implementation is
efficient in terms of computer memory compared to previ-
ous off-policy RL methods for POMDPs. For example, our
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Figure 2: Learning curves on four meta-RL environments. Our implementation on recurrent model-free RL can surpass the
specialized meta-RL method off-policy variBAD (Dorfman et al., 2020) on their environments, Semi-Circle and Wind; and greatly
outperform on-policy variBAD (Zintgraf et al., 2020) on their environment Cheetah-Dir, but fail to match their performance on Ant-Dir.
On Cheetah-Dir and Ant-Dir, we show the learning curves of the best off-policy oracle and Markovian policies. We copied the data from
on-policy variBAD’s public github repository' to plot the learning curves of it, oracle PPO and RL2 (Duan et al., 2016).

implementation uses 200x less RAM than Han et al. (2020)
and 9x less GPU memory than Dorfman et al. (2020).

5.1. Recurrent Model-Free RL is Comparable with
Prior Specialized Methods on Their Benchmarks

Recurrent model-free RL is a ubiquitous baseline across a
range of different POMDP settings (e.g., meta-RL, occluded
observations, delayed rewards) (Rakelly et al., 2019; Zint-
graf et al., 2020; Humplik et al., 2019; Igl et al., 2018; Han
et al., 2020; Arjona-Medina et al., 2019). This section casts
doubt on that claim, showing that a well-tuned implementa-
tion of recurrent model-free RL can perform at least as well
as more complex or specialized methods in most of their
experimented environments.

We tune a wide range of decision factors, shown in Sec. 4.
App. A.3 shows the detailed options of each decision factor.
For each subarea, we select one recent specialized method
and use the same benchmark as used in the paper propos-
ing that method. For meta-RL, we perform one additional
comparison.

For each benchmark, we show the performance of a single
variant among our design combinations that works best
across the environments in that benchmark; in other words,
we use the same hyperparameters for each task within a
benchmark, and do not tune hyperparameters individually
for each task. The exact configurations of each benchmark
can be found in the last five rows of Table 2. Our implemen-
tation is at least comparable to (and sometimes outperforms
by a wide margin) prior specialized methods across most
tasks (18 out of 21 environments). Our method performs
especially well in terms of sample efficiency. However, we
find one benchmark where it performs worse on 2 out of 3
environments (Ant-Dir and Humanoid-Dir from on-policy
variBAD (Zintgraf et al., 2020)). This result is not entirely
surprising, as on-policy methods typically outperform off-
policy methods (which our implementation uses) on the
fully-observed versions of these tasks (see Fig. 12).

For each plot of learning curves, we show three approaches
as references. First, an oracle policy has access to the
POMDP hidden states, turning the POMDP into an MDP.

This policy should therefore be treated as an upper bound on
the performance that any POMDP method should receive.
Second, as a lower bound, we use a Markovian policy
to solve the POMDP. Both oracle policy and Markovian
policy are trained with the same hyperparameters as our
recurrent model-free RL implementation. We also compare
to a random policy, which represents a trivial lower bound.
We show the complete learning curves in App. E.1 and
numerical results in Table 7, and provide implementation
details in App. B.

“Standard” POMDP. We study “standard” POMDPs by
looking at tasks that typically occlude some part of the ob-
servation. We will compare against VRM (Han et al., 2020),
a recent, state-of-the-art, model-based POMDP algorithm.
We adopt the occlusion benchmark proposed by VRM and
there are 8 environments {Hopper, Ant, Walker, Cheetah }-
{P, V}, where “-P” stands for observing positions and angles
only, and “-V” stands for observing velocities only.

Fig. 1 and Fig. 22 show that the best single variant of our
model-free recurrent RL implementation outperforms VRM
in 6 out of 8 environments, especially in {Cheetah, Hopper}-
P (over 80% of the oracles). Our results suggest that, while
the variational dynamics model used by VRM may be use-
ful for some tasks, this model is not necessary to achieve
high results. While we are primarily interested in sample
complexity, but not compute, it is worth noting that our re-
current model-free RL implementation is substantially more
efficient than the open-source VRM implementation: our
implementation trains 5x faster and can reduce 200x RAM
usage (see App. A).

Meta-RL. We next study the meta-RL setting, where
some indicator of the task is unobserved. We compare
our implementation of recurrent model-free RL to a spe-
cialized, state-of-the-art method, variBAD (Zintgraf et al.,
2020). VariBAD explicitly learns task embeddings using
a variational, model-based objective. While the variBAD
was originally proposed using PPO (Zintgraf et al., 2020),
recent work has effectively used the same method with

"https://github.com/lmzintgraf/varibad
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Figure 3: Learning curves on one robust RL environment,
Cheetah-Robust. We show the average returns (left figure) and
worst returns (right figure) of each method. The single best vari-
ant of our implementation on recurrent model-free RL can greatly
outperform the specialized robust RL method MRPO (Jiang et al.,
2021), and is more sample-efficient and stable than recurrent PPO.

SAC (Dorfman et al., 2020). We refer to these methods
as on-policy variBAD and off-policy variBAD, and will
compare to both of them. Importantly, we use the same en-
vironments as the papers that proposed these methods. The
environments proposed for off-policy variBAD are relatively
easy: Semi-Circle, Wind, and Cheetah-Vel. We adapt Wind
to make it harder to solve. Off-policy variBAD is shown
to have superior performance over on-policy variBAD in
this benchmark (Dorfman et al., 2020, Fig. 11). The en-
vironments proposed for on-policy one are harder: {Ant,
Cheetah, Humanoid }-Dir. On-policy variBAD outperforms
RL2 (Duan et al., 2016) in this benchmark (Zintgraf et al.,
2021, Fig. 13).

Fig. 2 shows that our best single variant outperforms
off-policy variBAD on their environments (Semi-Circle
and Wind), and on-policy variBAD on their environment
(Cheetah-Dir), both in terms of sample efficiency and asymp-
totic return. While methods like variBAD disentangle task
inference from control, potentially stabilizing training, our
experiments suggest that stable training might be achieved
with simple recurrent model-free RL. As our implementa-
tion is off-policy, it has the potential to have better sample
efficiency than on-policy variBAD. As our implementation
is trained end-to-end, without using pre-trained task rep-
resentations like off-policy variBAD, it does not have the
staleness issue in task representations (Kapturowski et al.,
2019). We believe that these factors may contribute to the
relatively good performance of recurrent model-free RL.
Nevertheless, our implementation performs worse than on-
policy variBAD on Ant-Dir (Fig. 2) and Humanoid-Dir
(Fig. 12). These negative results are not entirely surprising,
as off-policy methods tend to perform worse than on-policy
methods on the fully-observed versions of these tasks (com-
pare oracle SAC/TD3 to oracle PPO in Fig. 12).

Robust RL. We then study robust RL. We choose the
recent, specialized algorithm MRPO (Jiang et al., 2021),
and adopt their benchmark based on SunBlaze bench-
mark (Packer et al., 2018). These environments have hidden
states that are fixed during one episode, namely {Cheetah,
Hopper, Walker}-Robust. The hidden state includes the
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Figure 4: Learning curves on RL in generalization in one envi-
ronment, Hopper-Generalize. We show the interpolation success
rates (left figure) and extrapolation success rates (right figure) of
each method. The single best variant of our implementation on
recurrent model-free RL can be par with the specialized method
EPOpt-PPO-FF (Rajeswaran et al., 2017a) in interpolation and
outperform it in extrapolation. The data of EPOpt-PPO-FF and
A2C-RC (a recurrent model-free on-policy RL method) are copied
from the Table 7 & 8 in Packer et al. (2018).

density and the friction coefficients of the simulated robots.

Fig. 3 shows both the average return and worst return of
our single best variant and MRPO on one environment. Fol-
lowing prior work (Jiang et al., 2021), we measure the worst
return using the average return in the worst 10% testing
tasks. Despite using the average-case objective, our method
achieves better worst-case performance than MRPO, which
directly optimizes this worst-case objective. Surprisingly,
our method even outperforms the oracle, which has access to
hidden state information. Our method is also over 80% more
sample-efficient than these alternative approaches. Our limi-
tation of recurrent model-free RL is its slow wall-clock time;
our implementation is 17.5x slower than MRPO, given the
same simulation steps (see App. A). Nonetheless, we be-
lieve that sample efficiency is often a more important factor
than computing efficiency.

Generalization in RL. We study generalization in RL
using two environments from the SunBlaze benchmark:
{Hopper, Cheetah}-Generalize. Following the evaluation
metrics (Packer et al., 2018, Sec. 6), we report the average
success rates in interpolation setting (training and testing
on the same POMDP) and extrapolation setting (training
on a POMDP with a hidden state distribution of small sup-
port, and testing on another POMDP with a hidden state
distribution of a disjoint support). We pick the best special-
ized method in the tables of final performance (Packer et al.,
2018, Table 7,8), a Markovian on-policy robust RL. method
EPOpt-PPO-FF (Rajeswaran et al., 2017a).

Fig. 4 shows interpolation and extrapolation results on one
environment. In the interpolation setting, our method per-
forms on par with the best prior method, EPOpt-PPO-FF.
In the more challenging extrapolation setting, our method
outperforms it and is comparable to the oracle. However, un-
like EPOpt-PPO-FF and oracle, our method does not require
access to the dynamics parameters.
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Figure 5: Learning curves on two temporal credit assignment
environments. We show the returns for Delayed-Catch and the
success rates of opening the door for Key-to-Door, following the
practice of IMPALA+SR (Raposo et al., 2021). The single best
variant of our implementation on recurrent model-free RL is much
more sample efficient than the specialized method IMPALA+SR
(the horizontal lines show their performance at 2.5M and 4M steps,
respectively).

Key-to-Door

Temporal credit assignment. Finally we move on to tem-
poral credit assignment. We choose the recent, special-
ized algorithm IMPALA+SR (Raposo et al., 2021), and
adopt their environments, namely, Delayed-Catch and Key-
to-Door. Both tasks have sparse rewards that depend on
the whole trajectory, thus the optimal value function should
be memory-based, and we did not compare Markovian RL
methods. As both tasks are discrete control with pixel in-
put, we adapt the observation embedder into a simple CNN,
and select SAC-Discrete (Christodoulou, 2019) as the RL
algorithm, which is the discrete version of SAC. We fol-
low IMPALA+SR to use LSTM as encoder and set context
length as full episode length. We tune the entropy tempera-
ture of SAC-Discrete and find that 0.1 works well on both
tasks.

Fig. 5 shows this single best variant can not only solve
the tasks, but also requires 100x fewer samples than IM-
PALA+SR (Raposo et al., 2021, Fig. 7b, Fig. 5b), which is
also a recurrent off-policy method.

Discussion on the performance of oracle policies. One
seemingly surprising result is that the oracle policies often
underperform our implementation of recurrent model-free
RL. We believe that this result is caused by using the same
hyperparameters for the oracle policies as for our recurrent
model-free implementation. We expect that further tuning
of the hyperparameters for the oracle policies would allow
them to surpass all the alternative approaches.

In summary, recurrent model-free RL can perform at least
as well as more specialized or complex methods on most of
their tasks, provided that the implementation is well tuned.
The good performance of this baseline across a wide range
of tasks and problem types bodes well for its performance
on other problems.
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Figure 6: Comparison between shared and separate recurrent
actor-critic architecture with all the other hyperparameters same,
on Semi-Circle, a toy meta-RL environment. We show the per-
formance metric (left) and also the average squared ¢2-norm of
the gradient w.r.t. RNN encoder(s) (right, in log-scale). For the
separate one, :critic and :actor refer to the separate RNN
in critic and actor networks, respectively.

5.2. What Matters in Recurrent Model-Free RL
Algorithms?

To study what factors explain the good performance of re-
current model-free RL, we will ablate the five important
design decisions introduced in Sec. 4: the actor-critic ar-
chitecture (Arch), the agent input space (Inputs), the
underlying model-free RL algorithm (RL), the RNN en-
coder (Encoder), and the RNN context length (Len). See
Table 2 for a summary of how prior work made these de-
sign decisions. Due to the space limit, we show the “single
factor analysis™ plots for each decision factor by averaging
the performance over the other factors in App. E.2.

Recurrent off-policy actor-critic architecture. We
study the choice of shared/separated architectures in two
simple POMDP environments. The results, shown in Fig. 6
and App. E.3, show that the shared architecture failed to
learn either of these tasks. The different scale of RNN gra-
dient norms w.r.t. actor and critic in the shared architecture
suggests that the gradient of critic loss may dominate the
actor’s. Our results echo prior work (Fakoor et al., 2020;
Meng et al., 2021; Sun et al., 2021) that use separate RNN
encoders and achieve high asymptotic rewards, and also
echo that (Han et al., 2020) shows poor results in the shared
architecture of SAC-LSTM.

Agent inputs. We next study the choice of agent inputs
using the Walker-P task. As shown in Table 3 (row 1), ad-
ditionally conditioning the agent on past rewards increases
performance by 1.3x. The reward signals could help reveal
the missing information of the velocity of the robot base,
which is occluded in Walker-P. On other tasks where veloc-
ity is occluded, we similarly find that conditioning on past
rewards improves performance (see o vs. or in Fig. 16).

Model-free RL algorithms. Table 2 shows that recurrent
model-free RL implementations using TD3 dominate in
4 out of 5 benchmarks. This finding might be partially
explained by the fact that most environments have relatively
easy dynamics. However, on environments with harder
dynamics such as Ant and Humanoid, SAC performs better
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Table 3: Ablation results in our implementation of recurrent model-free RL. This table shows how a single change in one decision
factor from the variant that is best on average in that subarea/benchmark, could significantly increase the performance. The first column
shows how we change the single decision factor, and the last column shows the performance comparison between the best variant in that
benchmark (left) and the ablated one (right). We choose the environments where the ablation makes the largest performance difference.
For robust RL and generalization in RL, we show the performance metric in worst returns and extrapolation success rates, respectively.

Change in one decision factor ‘ Subarea / Benchmark Environment Performance comparison
Inputs: oa — oar “Standard” POMDP Walker-P 981.6 — 1345.0 ( )
RL: TD3 — SAC “Standard” POMDP Ant-P 310.7 — 2123.5( )

Encoder: LSTM — GRU Robust RL
Len: 64 — 400 Meta-RL
Len: 64 — 5 Generalization
Len: 64 — 5 “Standard” POMDP

Walker-Robust
Cheetah- Vel
Hopper-Generalize
Walker-V

765.9 — 931.3 (1.2 )
852 — -74.6 ( )
0.292 — 0.415 (1.1)
121.4 — 2643 (2.2)

than TD3. For instance, the 2nd row of Table 3 shows the
effect of RL algorithm in a POMDP environment Ant-P.
SAC is significantly better than TD3 (increase by 6.8,
surpassing the PPO-GRU (Kostrikov, 2018) in Fig. 1). Two
exceptions to this rule are Walker-V (Fig. 17) and Ant-Dir
(Fig. 2) where on-policy algorithms (PPO-GRU and RL2)
outperform off-policy ones as used in our implementation.

RNN variants and context length. Generally, there is no
significant difference between LSTM and GRU (see the
single factor analysis in App. E.2). However, the 3rd row
of Table 3 shows the effect of RNN encoder in a robust RL
environment. We can see replacing LSTM with GRU can
increase the worst-case metric in Walker-Robust. For the
context length in RNNs, a medium length (64) dominates in
all the best variants in most benchmarks (see Table 2), which
could be viewed as a trade-off between memory capacity
and computation costs. However, the remaining rows of
Table 3 show the mixed effects of context length in RNNSs.
Both increasing and decreasing the context length can boost
the performance in different environments. Specifically, de-
creasing the length from 64 to 5 makes our implementation
surpass VRM in Walker-V (increase by 2.2x). This result
might explain why the prior methods adopt a wide range of
context lengths from 1 to 2048 (see Table 2). Therefore, the
choice of context length seems to be problem-specific and
may require tuning.

Summary. We now summarize the main findings of our
experiments based on the benchmarks:

1. Using separate weights for the recurrent actor and
recurrent critic can boost performance, likely because
it avoids gradient explosion (Fig. 6 and Fig. 21).

2. Using state-of-the-art off-policy RL algorithms as the
backbone in recurrent model-free RL can improve
asymptotic performance and sample efficiency in most
environments (Fig. 1 and Figures in App. E.1).

3. The context length for the recurrent actor and critic
has a large influence on task performance, but the

optimal length seems to be task-specific. Starting with
a medium length is a good strategy (Rows 4-6 in
Table 3 and Figures in App. E.2).

4. Itis important that the inputs to the recurrent actor and
critic, such as past observations and past returns, con-
tain enough information to infer the POMDP hidden
states (Row 1 in Table 3 and Figures in App. E.2).

These findings may provide a useful initialization for re-
searchers to study recurrent model-free RL.

6. Conclusion and Future Work

This paper shows that a carefully-designed implementation
of recurrent model-free RL can perform well across a range
of benchmarks corresponding to different types of POMDPs.
In most cases, our implementation performs on par with (if
not significantly better than) prior methods that are specif-
ically designed for the corresponding types of POMDPs.
Our ablation experiments demonstrate the importance of
key design decisions, such as the underlying RL algorithm
and the RNN context length. While the best choices for
some decisions (such as using separate RNNs for the actor
and the critic) seem to be consistent across domains, the best
choices for other decisions (such as RNN context length)
are problem-dependent. We encourage future work to study
automated mechanisms for selecting these crucial design
decisions. In releasing our code, we hope to aid future
research into the design of stronger POMDP algorithms.
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A. Code-Level Details

In this section, we first introduce the outline of code design, especially the replay buffer for sequences, and then compare the
system usage, including computing speed, RAM, and GPU memory, with previous POMDP methods.

A.1. Code Design

Easy to use. Our code can be used either as an API to call the recurrent model-free RL class or a framework to tune
the details in the class. The recurrent model-free RL class takes the hyperparameters of RNN encoder type, shared or
separate actor-critic architecture, and whether include previous observations, and/or actions, and/or rewards into the inputs,
to generate different instances. The details of the hyperparameter tuning set are shown in Sec. A.3.

Memory-efficient replay buffer for sequence data. Moreover, we design an efficient replay buffer for off-policy RL
methods to cope with sequential inputs. Previous methods (Han et al., 2020; Yang & Nguyen, 2021) mainly use a
three-dimensional replay buffer to store sequential inputs, with the dimensions of (num episodes, max episode
length, observation dimension), taking observation storage as an example. This kind of implementation
becomes memory-inefficient if the actual episode length is far smaller than the max episode length (e.g. in VRM’s occlusion
benchmark, the shortest episode length can be 5, while the max episode length is 1000, which can cause 200x waste in RAM).
Instead, we manage to implement a two-dimensional replay buffer of shape (num transitions, observation
dimension) for observation storage, which also records the locations where each stored episode ends. In case of
actual episodes that are shorter than the provided context length, the buffer also generates on-the-fly masks to indicate
if the corresponding transitions are valid, so that we do not need to save zero-padded observations in the buffer. This
enables the agent to receive a batch of previous experiences in a three-dimensional tensor of (batch size, context
length, observation dimension) when sampling from the replay buffer. To sum up, our replay buffer can
support varying-length sequence inputs and subsequence sampling without zero padding in the buffer.

Flexible training speed. Finally, our code supports flexible training speed by controlling the ratio of the numbers of
gradient updates in RL w.r.t. the environment rollout steps (called num_updates_per_iter in the code). The training
speed is approximately proportional to the ratio if the simulator speed is much faster than the policy gradient update.
Typically, the ratio is less than or equal to 1.0 to enjoy higher training speed.

A.2. System Usage

Table 4 shows the typical system usage of our implementation and the compared specialized methods on different environ-
ments. The time cost for our implementation and off-policy variBAD depends on how many processes in parallel are run on
a single GPU - our implementation can be run with 8 processes on a single GPU while off-policy variBAD is run with one
process due to large GPU memory usage. From the results we can see that our implementation is memory-efficient in both
RAM and GPU, and has an acceptable training speed with default hyperparameters. The computer system we used during
the experiments includes a GeForce RTX 2080 Ti Graphic Card (with 11GB memory) and Intel(R) Xeon(R) Gold 6148
CPU @ 2.40GHz (with 250GB RAM and 80 cores).

Table 4: Comparison between our implementation and specialized methods in system usage. The time costs are
evaluated within 1M environment steps. Both VRM and MRPO are run on CPUs and MRPO does not have a replay buffer
(shown in N/A). Off-policy variBAD requires the assumption of fixed episode length for the RAM cost.

Method Environment ‘ Time cost RAM  GPU memory
Ours Hopper-V 22.5h o(l) 1.2 GB
VRM (Han et al., 2020) Hopper-V 102 h 0(200) N/A
Ours Semi-Circle 12h O(1) 1 GB
Off-policy variBAD (Dorfman et al., 2020) Semi-Circle 23h O(1)* 9.5GB
Ours Cheetah-Robust 7h O(1) 1.1 GB
MRPO (Jiang et al., 2021) Cheetah-Robust 0.4h N/A N/A
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A.3. Our Hyperparameter Tuning Set
Our proposed implementation has the following decision factors (introduced in Sec. 4) to tune in the experiments with the
following options (the names in brackets are abbreviated ones):

¢ Actor-Critic architecture (Arch): share the encoder weights between the recurrent actor and recurrent critic or not,

namely shared and separate.

* Model-free RL algorithms (RL): td3 (Fujimoto et al., 2018) and sac (Haarnoja et al., 2018b) (i.e. automated tuning
of the entropy temperature)

Encoder architecture (Encoder): 1 stm (Hochreiter & Schmidhuber, 1997) and gru (Cho et al., 2014).

Agent inputs (Inputs): o, oa, or, oar, oard (the notation is introduced in Sec. 4; depending on the POMDPs, see
“Agent input space” row in Table 5).

Context length (Len): short (5), medium (64), long (larger than 100, depending on the POMDPs).

Entropy temperature of SAC-Discrete (SAC-D) (Christodoulou, 2019) (used in temporal credit assignment tasks):
0.001, 0.01, 0.1, 1.0.

For each instance, we label it with the names of all the hyperparameters it used in lowercase as notation. For example,
td3-1lstm-64-or-separate in Fig. 6 refers to the instance that uses the separate actor-critic architecture, TD3 RL
algorithm, LSTM encoder, the agent input space of previous observations and reward sequences, and RNN context length of
64.
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Figure 7: The network architecture of our implementation on recurrent model-free RL with separate RNNs. The left
part shows the actor network, and the right shows the critic network. Each block shows a trainable module, with independent
weights. We italicize the previous action and reward embedders as they are optional. By default, each embedder has one
hidden layer, each RNN is one-layer LSTM or GRU, each MLP has two hidden layers.

Fig. 7 shows our (separate) recurrent actor-critic architecture (except for temporal credit assignment tasks). The shortcut
from current observation embedding to the MLP may reduce the burden of accurately memorizing it in RNN, and is widely
used in prior memory-based architectures (Zintgraf et al., 2020; Dorfman et al., 2020; Ding, 2019; Hung et al., 2018). For
temporal credit assignment tasks (image-based observations, discrete actions), we adjust the network architectures: replace
the MLP observation embedders in actor and critic with two-layer CNNs, remove the observation-action embedder in critic.

Table 5 shows the main hyperparameters we adopt for each benchmark. We did not tune these hyperparameters, except that
we adjusted the number of gradient steps so that all the experiments could be completed in 72 hours.
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Figure 8: The network architecture of our implementation on recurrent model-free RL with shared RNN. The upper
right part shows the critic heads, and the bottom right shows the actor head. Both take the inputs from the same RNN.
Notation is same as Fig. 7.

We store the observed trajectories in the replay buffer we designed (see App. A). Each time we sample a (sub)trajectory
given the context length. If the actual episode length is smaller than the context length, we zero-pad the (sub)trajectory. We
use the zero start state strategy (Hausknecht & Stone, 2015; Kapturowski et al., 2019) for simplicity, i.e. use zeros as the
initial hidden state of RNNs.

For Markovian policies (SAC and TD3), we remove the embedders and RNNs from the actor-critic architecture, and
train them with same hyperparameters as those of recurrent policies. For each task, we report the results of either SAC
or TD3, whichever achieves higher returns. For oracle policies, we use the well-tuned results from Table 1 (“SAC w/
unstructured row”) in Raffin et al. (2021) based on Stable Baseline3 (Raffin, 2020), for “standard” POMDPs. For the
other benchmarks, we have to run the Markovian policies (SAC and TD3) with access to the hidden states, using the same
training hyperparameters as those of recurrent policies. But these oracle policies might be not well-tuned given the same
environment and gradient steps, especially in robust RL and generalization in RL. In temporal credit assignment benchmark,
as the optimal value function is history-dependent, we do not run Markovian policies or oracle policies.

We also show the settings of the specialized methods we compared in the main paper in Table 6. Note that our recurrent
model-free RL share exactly the same settings as off-policy variBAD (Dorfman et al., 2020) and VRM (Han et al., 2020).
For MRPO (Jiang et al., 2021) and EPOPT (Rajeswaran et al., 2017a), they adopt totally different settings, i.e. on-policy
Markovian approaches to MDPs (with access to the ground-truth state (s) of environment). Thus, in fact, MRPO and EPOPT
should be viewed more as oracle policies as upper bounds of recurrent model-free RL.

C. Evaluation Details

Throughout the experiments, we run each instance/variant in our implementation and each compared method with 4 random
seeds.

There are two steps to select the best single variant of our implementation in each benchmark. First, we calculate the final
performance of each variant by the average performance of the last 20% environment steps across the 4 seeds. Then we
select the best variant in terms of the normalized returns, calculated by % € [0, 1], where R is the raw average
return of that variant and R,,,x and R,,;, are the maximum and minimum "of all the methods including oracle policy and

random policy.

The bar charts in Fig. 1 and 22 and Table 3 show the final normalized performance of each method / variant.
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Table 5: Hyperparameter summary in our implementation of model-free recurrent RL. For each benchmark, we report
the hidden layer size of each module, RL and training hyperparameters. For meta-RL, we take the model on Cheetah-Vel
as example, which follows the architecture design of off-policy variBAD (Dorfman et al., 2020). The hidden size of
observation-action embedder is the sum of that of observation embedder, previous action embedder (if exists), and reward
embedder (if exists).

“Standard” Generalization Temporal
Meta-RL pomMpp ~ ROPustRL in RL credit assignment
Observ. embedder [32] 2-layer CNN
Hidden | Prev. Action embedder [16] not used
layer Reward embedder [16] not used
size RNN [128]
MLP [128,128,128] [256, 256] [128, 128]
Optimizer Adam (Kingma & Ba, 2015)
Learning rate 3e-4
RL Discount factor ~y 0.99
hparams Smoothing coef 7 0.005
P SAC(D) temperature automatically updated by Haarnoja et al. (2018b) 0.1
TD?3 noises default values from Fujimoto et al. (2018) N/A
Replay buffer size le6
Batch size 32 64 32
RNN Weight initialization Orthogonal matrices (Saxe et al., 2014)
Training Environment steps M 1.5M M M
hparams Gradient steps 0.1M 1.5M 0.6M 1.25M
Agent Largest input space oard oar oa oar o
inputs Best input space oard oa o o o

D. Benchmark Details

We conduct our experiments on 6 benchmarks with 21 environments in total.

D.1. “Standard” POMDP Benchmark from VRM

We adopt the occlusion benchmark proposed by VRM, replace the deprecated roboschool with PyBullet (Coumans & Bai,
2016) as suggested by the official github repository>. We follow the practice in VRM (Han et al., 2020) in the other aspects
of environment design, i.e. we remove all the position/angle-related entries in the observation space for “-V”” environments
and velocity-related entries for “-P” environments, to transform the original MDP into POMDP.

We also consider the classic Pendulum environment for sanity check in App. E.3.

{Pendulum, Ant, Cheetah, Hopper, Walker}-P. The “-P” stands for the environments that keep position-related entries
by removal of velocity-related entries. Thus, the observed state s° includes positions p, while the hidden state s” is the
velocities v.

{Pendulum, Ant, Cheetah, Hopper, Walker}-V. The “-V” stands for the environments that keep velocity-related entries
by removal of position-related entries. Thus, the observed state s° includes positions v, while the hidden state s” is the
velocities p.

2https ://github.com/openai/roboschool#deprecated-please-use-pybullet-instead
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Table 6: Settings of the specialized methods we compared in the main paper. For off-policy variBAD, we take the
model on Cheetah-Vel as example.

“Standard” Generalization Temporal
Meta-RL  Meta-RL POMDP Robust RL in RL credit aSSignment
Off-policy  On-polic
Approach Vaﬁ% 5 VaripB ADy VRM MRPO EPOPT IMPALA+SR
Memory-based? v 4 4 X X 4
Off-policy? v X 4 X X 4
Input space oard oard oar S S oar
Access to hidden states? X X X 4 v X

D.2. Meta-RL Benchmark from Off-Policy VariBAD

For a fair comparison with the same training setting, we directly use the benchmark adopted in off-policy variBAD (Dorfman
et al., 2020), and limit the number of training tasks as it does.

Semi-Circle. The observed state s° includes the agent’s 2D position p, and the hidden state s" is referred to the goal
state p,. The goal state only appears in reward function: R(s¢, s7, 1, az, s") := R(pr41,p4) = L(||[pe+1 — pyll2 < 7). The
dynamic function 7" is independent of the goal state.

Wind. We modified the parameters of Wind environment in Dorfman et al. (2020) to make it harder to solve. The agent must
navigate to a fixed (but unknown) goal p, within a distance of D = 1 from its fixed initial state. Similarly to Semi-Circle, the
reward function is goal conditioned but without hidden state: R(s¢, s7, 1, at, s") := R(pr+1,p9) = 1(||pe+1 — pgll2 < 7).
The hidden state s appears in the deterministic dynamics as a noise term, i.e. s¢ 1 =S8 ta;+ s, where s" is sampled
from U[—0.08, 0.08] at the initial time-step and then kept fixed.

Cheetah-Vel. It uses MuJoCo (Todorov et al., 2012) simulator of HalfCheetah-v2. The hidden state sh is the target
speed v, € R and the observed state s° includes the velocity v € R. Reward function includes both the hidden state and
action: R(sy,s9, 1, a4, s") := R(vy,vg,a¢) = —|lvg — vg |1 — 0.05]|a¢||3. The dynamic function 7" is independent of the
goal state.

D.3. Meta-RL Benchmark from On-Policy VariBAD

For a fair comparison with the same training setting, we directly use the benchmark adopted in on-policy variBAD (Zintgraf
et al., 2020), and do not limit the number of training tasks as it does.

{Ant, Cheetah, Humanoid }-Dir. It uses MuJoCo (Todorov et al., 2012) simulator of Ant-v2, HalfCheetah-v2,
Humanoid-v2. The hidden state s” is the target velocity direction vy € R?, and the observed state s° includes the velocity
v € R2. The reward function takes both the hidden state and action as inputs: R(s,s?,,ay, sh) == R(vi,vg,a1) =
(ve,v4) — a|at]|3 where v > 0 is the penalty constant. The dynamic function 7" is independent of the goal state. Ant-Dir
and Cheetah-Dir have only 2 tasks (forward or backward), while Humanoid-Dir samples tasks uniformly from the unit
circle.

D.4. Robust RL Benchmark from MRPO

{Hopper, Walker, Cheetah}-Robust. We directly adopt the environments used in MRPO (Jiang et al., 2021). In each
environment, the hidden state is the dynamics parameters including the density and friction coefficients of the simulated robot
in roboschool, adapted from the SunBlaze (Packer et al., 2018). The exact ranges of the hidden states in each environment
can be found in Jiang et al. (2021, Table 1). We evaluate the algorithms with 100 tasks in each environment, and use the
average of them as average returns, and the average of the worst 10% of them as worst returns, following the MRPO paper.
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D.5. Generalization in RL Benchmark from SunBlaze

{Hopper, Cheetah}-Generalize. We directly adopt the environments used in SunBlaze (Packer et al., 2018). In each
environment, the hidden state is the dynamics parameters including the density, friction coefficients, and the power of the
simulated robot in roboschool. The exact ranges of both interpolation and extrapolation in the hidden state distribution
for each environment can be found in Packer et al. (2018, Table 1). We follow the practice of SunBlaze to evaluate the
interpolation and extrapolation success rates.

D.6. Temporal Credit Assignment Benchmark from IMPALA+SR

Delayed-Catch, Key-to-Door. We directly adopted the two environments from IMPALA+SR paper (Raposo et al., 2021,
Sec. 3.2 and 3.3). In both environments, they have discrete action spaces (3 and 4 actions) and pixels as observations
(1 x 7 x 7and 3 x 5 x 5). The reward functions are trajectory-level and sparse.

In Delayed-Catch, there are 40 runs in each episode, with a total length of around 280. The agent will only receive a non-zero
reward at the end of each episode, which is the total number of successful runs, thus the optimal terminal reward is 40.

In Key-to-Door, there are three phases in one episode. In the first phase, the agent can pick up a key, but no reward will be
given. In the second phase, the agent can pick up apples to get rewards. In the third phase, the agent can open the door, only
if it has picked up the key in the first phase (the agent cannot see the key after the first phase), to get a reward bonus. Thus
the final reward bonus depends on the agent’s action that happens in the distant past. We follow the prior work to report the
success rate of opening the door as the evaluation metric.

E. Full Experimental Results
E.1. Learning Curves of All the Compared Methods

In this subsection, we show all the learning curves of all the compared methods (including oracle policy as upper bound,
Markovian and random policies as lower bounds) in each benchmark, namely “standard” POMDPs (Fig. 9 and Fig. 10),
meta-RL (Fig. 11 and Fig. 12), robust RL (Fig. 13), generalization in RL (Fig. 14), and temporal credit assignment (Fig. 15).

E.2. Single Factor Analysis on Our Implementation

Our analysis will focus on ablating the important design decisions: the actor-critic architecture (Arch), the agent input
space (Inputs), the underlying model-free RL algorithm (RL), the RNN encoder (Encoder), and the RNN context length
(Len).

From these plots, we can see that each decision factor can make a difference in some environments. For example, the
choice of RL algorithm is crucial in Ant-P (Fig. 16), Cheetah-V (Fig. 17), Wind (Fig. 18) and Hopper-Generalize (Fig. 20).
The context length is essential in all the “-P” environments (Fig. 16), Cheetah-Vel (Fig. 18), and both the generalization
environments (Fig. 20). The agent input space can make a difference in most “-P” environments (Fig. 16) possibly because
oar contains the information of missing velocities.

E.3. Additional Results on Separate vs Shared Recurrent Actor-Critic Architecture

Now we show the result in another POMDP environment, Pendulum-V, which occludes the positions and angles, in Fig. 21.
We can see that the shared encoder architecture is also worse than the separate one, possibly due to the different gradient
scales in actor and critic losses w.r.t. the encoder.

E.4. Additional Results on Comparison with VRM

Both Fig. 1 and Fig. 22 shows the final performance of the same single variant of our implementation, but the former shows
our results with 1.5M simulation steps while the latter shows our results with 0.5M simulation steps to match with those of
VRM due to the time budget.
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Table 7: Numerical results of our final performance. The best single variant follows the notation in App. A.3. The
performance column shows the mean and standard deviation of the metric (averaged at the last 20% of the total environment

steps) across the 4 seeds.

Benchmark Best single variant Environment Env steps Metric Performance
Ant-P 348 + 282
Ant-V 1113 £ 360
Cheetah-P 2693 + 219
“Standard” Cheetah-V 1980 + 143
POMDP td3-gru-64-oa-separate Hopper-P 1.5M Avg return 2133 + 326
Hopper-V 1495 + 381
Walker-P 982 + 339
Walker-V 121 £ 52
td3-1lstm-64-ord-separate Semi-Circle 1.5M 942 + 0.6
td3-1stm-64-oad-separate Wind 0.75M 62.8 +0.5
td3-1lstm-64-oard-separate Cheetah-Vel M -84.7+11.1
Meta-RL Ant-Dir 30M Avgreturn - yeg6 4 177
sac—gru-max-oard-separate Cheetah-Dir 20M 4189 + 282
Humanoid-Dir 30M 1322 + 257
Avg return 2278 £ 454
Cheetah-Robust Worstreturn 1587 + 355
a P Avg return 2392 + 127
Robust RL td3-1stm-64-o-separate Hopper-Robust 3M Worst return 1169 + 304
Avg return 1807 + 347
Walker-Robust Worst return 766 + 504
o Cheetah-Generalize Interpolatllon 0.989 £ 0.008
Generalization td3-lstm-64-—o-separate M Extrapolation  0.656 4+ 0.011
in RL s separa Hooper-Generalize Interpolation  0.757 4 0.138
PP Extrapolation  0.299 + 0.029
Temporal d-1Stm-max—o— rat Delayed-Catch 2.5M Avg return 39.8+£04
credit assignment sac s ax-omseparate Key-to-Door 4M Success rate  0.996 + 0.009
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Figure 9: Learning curves on “standard” POMDP benchmark that preserves positions & angles but occludes veloc-
ities in the states (namely “-P”). We show the results from the single best variant of our implementation on recurrent
model-free RL, the popular recurrent model-free on-policy implementation (PPO-GRU, A2C-GRU) (Kostrikov, 2018), and
also model-based method VRM (Han et al., 2020). Note that VRM is around 5x slower than ours, so we have to run 0.5M
environment steps for it. Given 0.5M steps budget, our implementation is at least comparable to (if not greatly surpasses)
the specialized method VRM on all the 4 environments.
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Figure 10: Learning curves on ‘“‘standard” POMDP benchmark that preserves velocities but occludes positions &
angles in the states (namely “-V”’). We show the results from the single best variant of our implementation on recurrent
model-free RL, the popular recurrent model-free on-policy implementation (PPO-GRU, A2C-GRU) (Kostrikov, 2018), and
also model-based method VRM (Han et al., 2020). Note that VRM is around 5x slower than ours, so we have to run 0.5M
environment steps for it. Given 0.5M steps budget, our implementation is at least comparable to (if not greatly surpasses)
the specialized method VRM on 3 out of the 4 environments.
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Figure 11: Learning curves on meta-RL benchmark adopted in off-policy variBAD paper (Dorfman et al., 2020).
We show the results from the single best variant of our implementation on recurrent model-free RL, and the specialized
meta-RL method off-policy variBAD (Dorfman et al., 2020). With better sample efficiency, our implementation is at least
comparable to (if not greatly surpasses) the specialized method off-policy variBAD on all the 3 environments.
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Figure 12: Learning curves on meta-RL benchmark adopted in on-policy variBAD paper (Zintgraf et al., 2020). We
show the results from the single best variant of our implementation on recurrent model-free RL, RL2 (Duan et al., 2016),
and the specialized meta-RL method on-policy variBAD (Zintgraf et al., 2020). We also show the learning curves of
oracle PPO, off-policy oracle, off-policy Markovian policies for reference. We directly use the open-sourced learning
curve data from https://github.com/lmzintgraf/varibad#results for oracle PPO, RL2, and on-policy
variBAD. Our implementation is at least comparable to (if not greatly surpasses) the specialized method on-policy variBAD
on 1 out of the 3 environments.
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Figure 13: Learning curves on robust RL benchmark. We show the average returns (left figures) and worst returns (right
figures) from the single best variant of our implementation on recurrent model-free RL, the specialized robust RL method
MRPO (Jiang et al., 2021), and recurrent PPO. Note that our implementation is much slower than MRPO and recurrent PPO,
so we have to run our implementation within 3M environment steps. With better sample efficiency, our implementation is at
least comparable to (if not greatly surpasses) the specialized method MRPO on all the 3 environments.
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Figure 14: Learning curves on generalization in RL benchmark. We show the interpolation success rates (left figures)
and extrapolation success rates (right figures) from the single best variant of our implementation on recurrent model-
free RL. We also show the final performance of the specialized method EPOpt-PPO-FF (Rajeswaran et al., 2017a) and
another recurrent model-free (on-policy) RL method (A2C-RC) copied from the Table 7 & 8 in Packer et al. (2018). Our
implementation is at least comparable to (if not greatly surpasses) the specialized method EPOpt-PPO-FF on both the 2
environments.
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Figure 15: Learning curves on temporal credit assignment benchmark. We show the total rewards for Delayed-Catch
and the success rates of opening the door for Key-to-Door, from the single best variant of our implementation on recurrent
model-free RL. We also show the performance of the specialized method IMPALA+SR at 2.5M and 4M steps, respectively.
Our implementation is at least comparable to (if not greatly surpasses) the specialized method IMPALA+SR on both the 2

environments.
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Figure 16: Ablation study of our implementation on ‘“standard” POMDP benchmark that preserves positions &
angles but occludes velocities in the states (namely “-P”’). We show the single factor analysis on the 4 decision factors
including RL, Encoder, Len, and Inputs for each environment.
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Figure 17: Ablation study of our implementation on ‘“‘standard” POMDP benchmark that preserves velocities but
occludes positions & angles in the states (namely “-V”’). We show the single factor analysis on the 4 decision factors
including RL, Encoder, Len, and Inputs for each environment.
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Figure 18: Ablation study of our implementation on meta-RL benchmark from off-policy variBAD. We show the

single factor analysis on covering all the decision factors.
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Figure 19: Ablation study of our implementation on robust RL benchmark. We show the single factor analysis on the
4 decision factors including RL, Encoder, Len, and Inputs for each environment in both average returns and worst returns.
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Figure 20: Ablation study of our implementation on generalization in RL benchmark. We show the single factor
analysis on the 3 decision factors including RL, Len, and Inputs for each environment in both interpolation and extraploation

success rates.
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Figure 21: Comparison between shared and separate recurrent actor-critic architecture with all the other hyperparam-
eters same, on Pendulum-V, a simple “standard” POMDP environment. We show the performance metric (left) and also the
average squared /o-norm of the gradient w.r.t. RNN encoder(s) (right, in log-scale). For the separate architecture, : critic
and :actor refer to the separate RNN in critic and actor networks, respectively.
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Figure 22: Final normalized returns of our implemented recurrent model-free RL algorithm with the same hyperparameters,
and the prior method VRM (Han et al., 2020) across the eight environments in “standard” POMDPs, each of which trained
in 0.5M simulation steps. Our implementation surpasses the specialized method VRM on 7 out of 8 environments. In the
figure, we also show Markovian policies as lower bounds for reference, and the y-axis is normalized return given the return
of oracle policy from Raffin et al. (2021).



