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Neural constraints on learning
Patrick T. Sadtler1,2,3, Kristin M. Quick1,2,3, Matthew D. Golub2,4, Steven M. Chase2,5, Stephen I. Ryu6,7,
Elizabeth C. Tyler-Kabara1,8,9, Byron M. Yu2,4,5* & Aaron P. Batista1,2,3*

Learning,whethermotor, sensory or cognitive, requires networks of
neurons to generate new activity patterns. As some behaviours are
easier to learn thanothers1,2, weasked if someneural activity patterns
are easier to generate than others. Here we investigate whether an
existing network constrains the patterns that a subset of its neurons
is capable of exhibiting, and if so, what principles define this con-
straint.Weemployedaclosed-loop intracorticalbrain–computer inter-
face learningparadigm inwhichRhesusmacaques (Macacamulatta)
controlled a computer cursorbymodulatingneural activity patterns
in theprimarymotor cortex.Using thebrain–computer interfacepar-
adigm,wecould specify andalterhowneural activitymappedtocursor
velocity. At the start of each session, we observed the characteristic
activity patterns of the recordedneural population.The activity of a
neural population can be represented in a high-dimensional space
(termed the neural space), wherein each dimension corresponds to
the activity of oneneuron.These characteristic activity patterns com-
prise a low-dimensional subspace (termed the intrinsic manifold)
within the neural space. The intrinsicmanifold presumably reflects
constraints imposedby theunderlyingneural circuitry.Herewe show
that the animals could readily learn to proficiently control the cursor
using neural activity patterns thatwerewithin the intrinsicmanifold.
However, animals were less able to learn to proficiently control the
cursorusing activitypatterns thatwereoutsideof the intrinsicmani-
fold.These results suggest that the existing structureof anetwork can
shape learning. On a timescale of hours, it seems to be difficult to
learn to generate neural activity patterns that arenot consistentwith
the existing network structure. These findings offer a network-level
explanation for the observation thatwearemore readily able to learn
new skillswhen theyare related to the skills thatwealreadypossess3,4.
Some behaviours are easier to learn than others1–4.We hypothesized

that the ease or difficulty with which an animal can learn a new behav-
iour is determined by the current properties of the networks of neurons
governing the behaviour. We tested this hypothesis in the context of
brain–computer interface (BCI) learning. In a BCI paradigm, the user
controls a cursor on a computer screen by generating activity patterns
across a population of neurons. A BCI offers advantages for studying
learning because we can observe all of the neurons that directly control
an action, and we can fully specify the mapping from neural activity to
action. This allowed us to define which activity patterns would lead to
task success and to test whether subjects were capable of generating
them. Previous studies have shown thatBCI learning canbe remarkably
extensive5–10, raising the intriguing possibility that most (or all) novel
BCI mappings are learnable.
TwomaleRhesusmacaques (aged7 and8years)were trained tomove

a cursor from the centre of a screen to one of eight radially arranged tar-
gets bymodulating the activity of 85–91 neural units (that is, threshold
crossingsoneachelectrode) recorded in theprimarymotor cortex (Fig. 1a).
To represent the activity of the neural population, we defined a high-
dimensional space (called theneural space)where each axis corresponds

to the activity of one neural unit. The activity of all neural units during
a short time period is represented as a point in this space (Fig. 1b). At
each time step, the neural activity (a green point in Fig. 1b) is mapped
onto a control space (black line in Fig. 1b; two-dimensional plane in the
actual experiments, corresponding tohorizontal andvertical cursor veloc-
ity) to specify cursor velocity. The control space is the geometrical rep-
resentation of a BCImapping. At the start of each day, we calibrated an
‘intuitivemapping’ by specifying a control space that themonkey used
to move the cursor proficiently (Extended Data Fig. 1).
At the beginning of each day we also characterized how each neural

unit changed its activity relative to the other neural units (that is, how
the neural units co-modulated). In the simplified network represented
inFig. 1b, neurons1 and3positively co-modulate due to common input,
whereasneurons 1and2negatively co-modulatedue to an indirect inhib-
itory connection. Such co-modulations amongneuronsmean that neural
activity does not uniformly populate the neural space11–16. We iden-
tified the low-dimensional space that captured the natural patterns of
co-modulation among the recorded neurons.We refer to this space as
the intrinsic manifold (yellow plane in Fig. 1b, c). By construction, the
intuitivemapping lieswithin the intrinsicmanifold.Ourkeyexperimental
manipulationwas to change theBCImapping so that the control space
was eitherwithin or outside of the intrinsicmanifold.Awithin-manifold
perturbation was created by re-orienting the intuitive control space
but keeping it within the intrinsic manifold (depicted as the red line in
Fig. 1c). This preserved the relationship between neural units and co-
modulation patterns, but it altered the way in which co-modulation
patterns affected cursor kinematics (red arrows, Fig. 1a). An outside-
manifold perturbationwas created by re-orienting the intuitive control
space and allowing it to depart from the intrinsicmanifold (depicted as
the blue line in Fig. 1c). This altered the way in which neural units con-
tributed to co-modulation patterns, but it preserved theway inwhich co-
modulation patterns affected cursor kinematics (blue arrows, Fig. 1a).
In both cases, performance was impaired once the new mapping was
introduced, and we observed whether the monkeys could learn to re-
gain proficient control of the cursor.
To regainproficient control of the cursorunder awithin-manifoldper-

turbation, the animals had to learn new associations between the natural
co-modulation patterns and the cursor kinematics (Fig. 1d). To restore
proficient control of the cursorunder anoutside-manifoldperturbation,
the animals had to learn to generatenewco-modulationpatterns among
the recorded neurons. Our hypothesis predicted that within-manifold
perturbations would be more readily learnable than outside-manifold
perturbations.
Just after the perturbedmappingswere introduced, BCI performance

was impaired (Fig. 2a, b, first grey vertical band). Performance improved
for the within-manifold perturbation (Fig. 2a), showing that the ani-
mal learned to control the cursor under thatmapping. In contrast, per-
formance remained impaired for the outside-manifold perturbation
(Fig. 2b), showing that learningdidnotoccur.Wequantified the amount
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). Forwithin-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d andExtended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCIperformance remained impaired (bluehis-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determineswhichpatterns ofneural activity (andcorrespondingbehav-
iours) a subject can readily learn to generate.
Twoadditional linesof evidence showthatBCI controlwasmore learn-

ablewhen using within-manifold perturbations than outside-manifold
perturbations. First, perturbation typesdiffered in their after-effects.After
a lengthy exposure to the perturbed mapping, we again presented the
intuitivemapping (the seconddashedvertical line inFig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Followingoutside-manifoldperturbations, performancewas
not impaired,which is consistentwith little, if any, learninghavingoccurred
(ExtendedData Fig. 3, blue histogram). Second, the difference in learn-
ability between the two typesofperturbationwaspresent fromthe earliest
sessions, and over the course of the study themonkeys did not improve
at learning (Extended Data Fig. 4).
These results show that the intrinsicmanifoldwas a reliable predictor

of the learnability of aBCImapping:newBCImappings thatwerewithin
the intrinsicmanifold weremore learnable than those outside of it.We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility thatmappingswhichweremore
difficult to use initiallymight bemore difficult to learn.We ensured that
the initial performance impairmentswere equivalent for the twopertur-
bation types (Fig. 3a).
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Second,we posited that the animalsmust search throughneural space
for thenewcontrol space following theperturbation. If thecontrol spaces
for one type of perturbation tended to be farther from the intuitive con-
trol space, then they might be harder to find, and thus, learning would
be reduced. We ensured that the angles between the intuitive and per-
turbed control spaces did not differ between the twoperturbation types
(Fig. 3b). Incidentally, Fig. 3b also shows that theperturbationswerenot
pure workspace rotations. If that were the case, the angles between con-
trol spaces would have been zero, not in the range of 40–80u as shown.
Third,weconsideredhowmuchof an impact theperturbations exerted

on the activity of each neural unit. Learning ismanifested (at least in part)
as changes in the preferred direction (that is, the directionofmovement
for which a neuron is most active) of individual neurons7,18. If learning
one typeof perturbation required larger changes inpreferred directions
of neural units, then those perturbations might be harder to learn. We
predicted the changes in preferred directions that would be required to
learn eachperturbationwhileminimizing changes in activity.Weensured
that learning the twoperturbation types required comparablepreferred-
direction changes (Fig. 3c).
Fourth, for one monkey (L), we ensured that the sizes of the search

spaces for finding a strategy to proficiently control the cursor were the
same for both perturbation types (see Methods).
Fifth, hand movements were comparable and nearly non-existent

for both perturbation types and should therefore have had no impact
on learnability (Extended Data Fig. 5).
We conclude from these analyses that the parsimonious explanation

for BCI learning is whether or not the new control space is within the
intrinsicmanifold. These alternative explanations did reveal interesting
secondary aspects of the data; they partially explainedwithin-category
differences in learnability, albeit in an idiosyncratic manner between
the two monkeys (Extended Data Fig. 6).
A key step in these experiments was the identification of an intrinsic

manifold using dimensionality reduction11. Although our estimate of
the intrinsic manifold can depend on several methodological factors
(ExtendedData Fig. 7 caption), the critical property of such amanifold
is that it captures the prominent patterns of co-modulation among the
recorded neurons, which presumably reflect underlying network con-
straints. For consistency,we estimated a linear, ten-dimensional intrinsic
manifold each day. In retrospect, we considered whether our choice of
tendimensions hadbeenappropriate (Fig. 4).Weestimated the intrinsic
dimensionality of the neural activity for each day (Fig. 4a); the average

dimensionalitywas about ten (Fig. 4b). Even though the estimateddimen-
sionalities ranged from4–16, the selectionof tendimensions still provided
amodel that was nearly as good as the best model (Fig. 4c). Because the
top fewdimensions captured themajority of the co-modulation among
the neural units (Fig. 4d), we probably could have selected a different
dimensionality within the range of near-optimal dimensionalities and
still attained similar results (ExtendedData Fig. 7 caption).Wenote that
we cannot make claims about the ‘true’ dimensionality of the primary
motor cortex, in part because it probably depends on considerations such
as the behaviours the animal is performing and, perhaps, its level of skill.
Sensorimotor learningprobably encompasses a variety ofneuralmech-

anisms, operating at diverse timescales and levels of organization. We
posit that learning a within-manifold perturbation harnesses the fast-
timescale learningmechanisms thatunderlie adaptation19,whereas learn-
ing an outside-manifold perturbation engages the neural mechanisms
required for skill learning20,21.This suggests that learningoutside-manifold
perturbations could benefit frommulti-day use5,22. Such learningmight
require the intrinsic manifold to expand or change orientation.
Other studies have employeddimensionality-reduction techniques to

interpret how networks of neurons encode information11–16 and change
their activity during learning23,24. Our findings strengthen those discov-
eries by showing that low-dimensional projections of neural data are not
only visualization tools—they can reveal causal constraints on the activ-
ity attainable by networks of neurons. Our study also indicates that the
low-dimensional patterns present among a population of neuronsmay
better reflect the elemental units of volitional control than do individ-
ual neurons.
In summary, a BCI paradigm enabled us to reveal neural constraints

on learning.Theprinciplesweobservedmaygovernother formsof learn-
ing4,25–28 and perhaps even cognitive processes. For example, combin-
atorial creativity29, which involves re-combining cognitive elements in
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newways,might involve the generation of new neural activity patterns
that are within the intrinsic manifold of relevant brain areas. Trans-
formational creativity, which involves creating newcognitive elements,
may result from generating neural activity patterns outside of the rel-
evant intrinsic manifold. More broadly, our results help to provide a
neural explanation for the balancewe possess between adaptability and
persistence in our actions and thoughts30.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in theonline versionof thepaper; referencesunique
to these sections appear only in the online paper.
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METHODS
Electrophysiology and behaviouralmonitoring.Werecorded from theproximal
arm region of the primary motor cortex in two male Rhesus macaques (Macaca
mulatta, aged 7 and 8 years) using 96-channel microelectrode arrays (Blackrock
Microsystems) as themonkeys sat head-fixed ina primate chair. All animal handling
procedureswere approvedby theUniversity of Pittsburgh InstitutionalAnimalCare
andUse Committee. At the beginning of each session, we estimated the root-mean-
square voltage of the signal on each electrode while the monkeys sat calmly in a
darkened room.We then set the spike threshold at 3.0 times the root-mean-square
value for each channel. Spike counts used for BCI control were determined from
the times atwhich the voltage crossed this threshold.We refer to the threshold cross-
ings recorded onone electrode as oneneural unit.Weused 85–91neural units each
day.We did not use an electrode if the threshold crossing waveforms did not resem-
ble action potentials or if the electrodewas electrically shorted to another electrode.
The data were recorded approximately 19–24months after array implantation for
monkey J and approximately 8–9months after array implantation for monkey L.
Wemonitored handmovements using an LEDmarker (PhaseSpace Inc.) on the

hand contralateral to the recording array. Themonkeys’ armswere loosely restrained.
The monkeys could have moved their forearms by approximately 5 cm from their
armrests, and therewere no restrictions onwristmovement.Thehandmovements
during the BCI trials wereminimal, andwe observed that themonkeys’movements
did not approach the limits of the restraints. ExtendedData Fig. 5a shows the aver-
age hand speed during the BCI trials. For comparison, ExtendedData Fig. 5b shows
the average hand speed during a standard point-to-point reaching task. We also
recorded the monkeys’ gaze direction (SR Research Ltd). Those data are not ana-
lysed here.
Task flow. Each day began with a calibration block during which we determined
the parameters of the intuitivemapping. Themonkeys then used the intuitivemap-
ping for 400 trials (monkey J) or 250 trials (monkey L) during the baseline block.
We then switched to the perturbedmapping for 600 trials (monkey J) or 400 trials
(monkey L) for the perturbation block. This was followed by a 200-trial washout
block with the intuitive mapping. Together, the perturbation and washout blocks
comprisedaperturbation session. The transitions betweenblocksweremade seam-
lessly, without an additional delay between trials. We gave the monkey no indica-
tion which type of perturbation would be presented. Onmost days, we completed
one perturbation session (monkey J, 50 of 58 days; monkey L, 29 of 30 days). On
nine days, we completed multiple perturbation sessions.
Experimental sessions.We conducted 78 (30 within-manifold perturbations; 48
outside-manifold perturbations) sessionswithmonkey J.We conducted31 sessions
(16within-manifold perturbations; 15 outside-manifold perturbations)withmon-
key L. For both monkeys, we did not analyse a session if the monkey attempted
fewer than 100 trialswith theperturbedmapping. Formonkey J,wedidnot analyse
11 sessions (2 within-manifold perturbations; 9 outside-manifold perturbations).
For monkey L, we did not analyse 3 sessions (2 within-manifold perturbations; 1
outside-manifold perturbation).
BCI calibrationprocedures.Each day beganwith a calibration block of trials. The
data that we recorded during these blocks were used to estimate the intrinsicman-
ifold and to calibrate the parameters of the intuitive mappings. For monkey J, we
used twocalibrationmethods (only one on a givenday), and formonkey L,weused
one method for all days.
The following describes the BCI calibration procedures for monkey J. The first

method for this monkey relied on the neural signals being fairly stable across days.
At the beginning of each day, the monkey was typically able to control the cursor
proficiently using the previous day’s intuitive mapping.We collected data for cali-
bration by having themonkey use the previous day’s intuitivemapping for 80 trials
(10 per target).
We designed the secondmethod becausewewere concerned about the potential

for carry-over effects across days. Thismethod relied onpassive observation of cursor
movement31. Themonkey observed the cursor automatically complete the centre-out
task for 80 trials (10 per target). At the beginning of each trial, the cursor appeared
in the centre of the monkey’s workspace for 300ms. Then, the cursor moved at a
constant velocity (0.15m s21) to the pseudo-randomly chosen target for each trial.
When the cursor reached the target, themonkey received a juice reward.After each
trial, there was a blank screen for 200ms before the next trial.
For both methods for monkey J, we used the neural activity recorded 300ms

after the start of each trial until the cursor reached the peripheral target for BCI
calibration.
The followingdescribes theBCI calibrationprocedure formonkeyL.Weobserved

that neural activity for this monkey was not as stable from day to day as it was for
monkey J. As a result, we could not use the calibration procedure relying on the
previous day’s intuitive mapping. Additionally, the observation-based calibration
procedurewas not as effective at generating an intuitive decoder formonkey L as it
had been for monkey J. Therefore, we used a a closed-loop calibration procedure

(similar to reference 32) to generate the intuitive decoder. The procedure began
with16 trials (2 to each target) of the observation task.We calibrated adecoder from
these16 trials in the samemanner as the firstmethod formonkey J.We then switched
to the BCI centre-out task, and the monkey controlled the velocity of the cursor
using the decoder calibrated on the 16 observation trials.We restrictedmovement
of the cursor so that itmoved in a straight line towards the target (that is, any cursor
movementperpendicular to the straightpath to the targetwas scaledby a factorof 0).
After 8 trials (1 to each target), we calibrated another decoder from those 8 trials.
Themonkey then controlled the cursor for 8more trials with this newly calibrated
decoder with perpendicular movements scaled by a factor of 0.125. We then cali-
brated a new decoder using all 16 closed-loop trials. We repeated this procedure
over a total of 80 trials until the monkey was in full control of the cursor (perpen-
dicular velocity scale factor5 1).We calibrated the intuitivemapping using the 80
trials duringwhich themonkey had full or partial control of the cursor. For each of
those trials, we used the neural activity recorded 300ms after the start of the trial
until the cursor reached the peripheral target.
BCI centre-out task. The same closed-loop BCI control task was used during the
baseline, perturbation andwashout blocks.At the beginning of each trial, the cursor
(circle, radius518mm)appeared in the centreof theworkspace.Oneof eightpossible
peripheral targets (chosenpseudo-randomly)waspresented (circle, radius5 20mm;
150mm (monkey J) or 125mm (monkey L) from centre of workspace, separated by
45u). A 300ms freeze period ensued, during which the cursor did not move. After
the freeze period, the velocity of the cursor was controlled by the monkey through
theBCImapping. Themonkeyhad 7,500ms tomove the cursor into theperipheral
target. If the cursor acquired the peripheral target within the time limit, the mon-
key received a juice reward. After 200ms, the next trial began. With the intuitive
mappings, themonkeys’movement timeswere near 1,000ms (ExtendedData Fig. 1),
but themonkeys sometimes exceeded the 7,500ms acquisition time limit with the
perturbedmappings. If the cursor did not acquire the target within the time limit,
there was a 1,500ms time-out before the start of the next trial.
Estimation of the intrinsic manifold.We identified the intrinsic manifold from
the population activity recorded during the calibration session using the dimen-
sionality reduction technique factor analysis33,34. The central idea is to describe the
high-dimensional population activity u in terms of a low-dimensional set of fac-
tors z . Each factor is distributed according to the standard normal distribution N.
This can be written in vector form as:

z*N 0,Ið Þ ð1Þ
where I is the identity matrix. The neural activity is related to those factors by:

ujz*N Lzzm,yð Þ ð2Þ

where u[Rq|1 is a vector of z-scored spike counts (z-scoring was performed sep-
arately for eachneural unit) taken innon-overlapping 45msbins across the qneural
units, and z[R10|1 contains the ten factors. That is, the neural activityu given a set
of factors z is distributed according to anormal distributionwithmeanLz 1m and
diagonal covariancey. The intrinsicmanifold is defined as the column space ofL.
Each factor, or latent dimension, is represented by a column ofL.We estimatedL,
m and y using the expectation–maximization algorithm35. The data collected dur-
ing the calibration sessions had 1,4706 325 (monkey J,mean6 standard deviation)
and 1,3796 157 (monkey L) samples.
Intuitivemappings.The intuitivemappingwas amodified version of the standard
Kalman filter36. A key component of the experimental designwas to use theKalman
filter to relate factors (z) to cursor kinematics rather than to relate neural activity
directly to the cursor kinematics. This modification allowed us to perform the two
different types of perturbation. We observed that performance with our modified
Kalman filter is qualitatively similar to performance with a standard Kalman filter
(data not shown).
The first step in the construction of the intuitive mapping was to estimate the

factors using factor analysis (equations (1) and (2)). For each z-scored spike count
vector ut , we computed the posterior mean of the factors ẑ t~E z t jut½ �. We then
z-scored each factor (that is, each element of ẑ t) separately.
The second stepwas to estimate the horizontal and vertical velocity of the cursor

from the z-scored factors using a Kalman filter:

xt jxt{1*N Axt{1zb,Qð Þ ð3Þ

ẑ t jxt*N Cxtzd,Rð Þ ð4Þ

where xt[R2|1 is a vector of horizontal and vertical cursor velocity at time step t.
We fitted the parametersA, b,Q,C, d andR usingmaximum likelihood by relating
the factors to an estimate of the monkeys’ intended velocity during the calibration
sessions. At each time point, this intended velocity vector either pointed straight
from the current cursor position to the targetwith a speed equal to the current cursor
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speed37 (monkey J, first calibration task) or pointed straight from the centre of the
workspace to the targetwith a constant speed (0.15m s21,monkeyL andmonkey J,
second calibration task).
Because spike countswere z-scored before factor analysis,m~0. Because factors

were z-scored beforedecoding into cursor velocity,d~0. Because calibrationkine-
matics were centred about the centre of the workspace, b~0.
The decoded velocity that was used to move the cursor at time step t was x̂t~

E xt ĵz1, . . . ,̂z t
h i

.We can express x̂t in termsof the decoded velocity at the previous
time step x̂t{1 and the current z-scored spike count vector ut :

x̂t~M1x̂t{1zM2ut ð5Þ

M1~A{KCA ð6Þ

M2~KSzb ð7Þ

b~LT LLTzy
� �{1 ð8Þ

As part of the procedure for z-scoring factors, Sz is a diagonal matrix where the
p, pð Þ element is the inverseof the standarddeviationof thepth factor.K is the steady-
stateKalmangainmatrix.We z-scored the spike counts and the factors in the intu-
itivemappings so that the perturbedmappings (which were based on the intuitive
mappings)would not require a neural unit to fire outside of its observed spike count
range.
Perturbedmappings.The perturbedmappingsweremodified versions of the intu-
itive mapping.Within-manifold perturbations altered the relationship between fac-
tors andcursor kinematics. The elements of the vector ẑ t werepermutedbefore being
passed into the Kalman filter (red arrows, Fig. 1b). This preserves the relationship
betweenneural units and the intrinsicmanifold, but changes the relationshipbetween
dimensions of the intrinsic manifold and cursor velocity. Geometrically, this cor-
responds to re-orienting the control space within the intrinsic manifold.
The following equations describe within-manifold perturbations:

x̂t~M1x̂t{1zM2,WMut ð9Þ

M2,WM~KgWMSZb ð10Þ

where gWM is a 10|10 permutation matrix defining the within-manifold per-
turbation (that is, the within-manifold perturbationmatrix). Each element of a per-
mutationmatrix is either 0 or 1. In each column and in each row of a permutation
matrix, one element is 1, and the other elements are 0. In other words, gWMSZbut

is a permuted version of SZbut .
Outside-manifold perturbations altered the relationship between neural units

and factors. The elements of ut were permuted before being passed into the factor-
analysis model (blue arrows, Fig. 1b). This preserves the relationship between fac-
tors and cursor velocity, but changes the relationship betweenneural units and factors.
Geometrically, this corresponds to re-orienting the control space within the neural
space and outside of the intrinsic manifold.
The following equations describe outside-manifold perturbations:

x̂t~M1x̂t{1zM2,OMut ð11Þ

M2,OM~KSZbgOM ð12Þ

where gOM is a q|q permutation matrix defining the outside-manifold perturba-
tion (that is, the outside-manifold perturbationmatrix). In other words, gOMut is a
permuted version of ut .
Choosing a perturbedmapping.Weuseddata from the first 200 trials (monkey J)
or 150 trials (monkey L) of closed-loop control during the baseline blocks to deter-
mine the perturbationmatrix that we would use for the session. The procedure we
used had three steps (detailed below). First, we defined a set of candidate perturba-
tions. Second, we predicted the open-loop cursor velocities for each candidate per-
turbation. Third, we selected one candidate perturbation. We aimed to choose a
perturbation such that the perturbed mapping would not be too difficult for the
monkeys to use nor so easy that no learning was needed to achieve proficient
performance.
For monkey J, we often alternated perturbation types across consecutive days.

For monkey L, we determined which type of perturbation we would use each day
before the first experiment. That orderwas set randomly by a computer.Wedid this
in order to avoid a detectable pattern of perturbation types.
The following describes the first step in choosing a perturbedmapping: defining

the candidate perturbations. For within-manifold perturbations, gWM is a 10|10
permutationmatrix. The total number possiblegWM is 10 factorial (3,628,800).We
considered all of these candidate within-manifold perturbations.

For outside-manifold perturbations, gOM is a q|q permutationmatrix, where q
is the number of neural units. For a population of 90 neural units, there are 90 fac-
torial (.10100) possible values of gOM. Due to computational constraints, we were
unable to consider everypossiblegOM as a candidateperturbation.Weused slightly
different procedures to determine the candidate outside-manifold perturbations
for the two monkeys.
The procedurewe used formonkey J is as follows.We permuted the neural units

independently. We chose to permute only the neural units with the largest modu-
lation depths (mean number of units permuted, 39618). Permuting the units with
larger modulation depths impacted the monkey’s ability to proficiently control the
cursormore thanwould permuting unitswith smallermodulation depths. For each
session, we randomly chose 6 million gOM that permuted only the specified units.
This formed the set of candidate outside-manifold perturbations.
The procedure we used for monkey L is as follows. To motivate it, note that the

two perturbation types altered the intuitivemapping control spacewithin a different
number of dimensions of the neural space for monkey J. Within-manifold pertur-
bations were confined to ten dimensions of the neural space, but outside-manifold
perturbations were confined to N dimensions of the neural space (where N is the
number of permuted units, 39 on average). Thus, the dimensionality of the space
throughwhich themonkeywould have to search to find the perturbed control space
was different for the two types of perturbedmappings; it was larger for the outside-
manifold perturbations than it was for the within-manifold perturbations. We
recognized that this differencemayhave affected themonkey’s ability to learn outside-
manifold perturbations. For monkey L, we reduced the size of the search space for
the outside-manifold perturbations, thereby equalizing the size of the search space
for the twoperturbation types.Wedid this by constraininggOM so that the number
of possible gOM was equal to the number of candidate within-manifold perturba-
tions.We then considered all gOM to be candidate outside-manifold perturbations.
To construct outside-manifold perturbations, we assigned each neural unit to one
of eleven groups. The first ten groups had an equal number of neural units. The
eleventh grouphad the remainingneural units.We specifically put the neural units
with the lowestmodulation depths in the eleventh group. The 10m (wherem is the
numberof neural units per group) neural units with the highestmodulationdepths
were randomly assigned to the first ten groups. We created outside-manifold per-
turbations by permuting the first ten groups, keeping all the neural units within a
group together. Thus, the number of possible gOM is 10 factorial, all of which were
considered as candidate outside-manifold perturbations.
We attempted to keep these groupings as constant as possible across days. On

some days, one electrode would become unusable (relative to the previous day) as
evident from the threshold crossingwaveforms.When this occurred, we kept all of
the groupings fixed that did not involve that electrode. If an electrode in one of the
first ten groups became unusable, wewould substitute it with a neural unit from the
eleventh group.
The following describes the second step in choosing a perturbed mapping: esti-

mating theopen-loopvelocitiesof eachcandidateperturbation.Theopen-loopvelocity
can be thought of as a coarse approximation to how the cursor would move if the
monkeydidnot learn. Theopen-loopvelocitymeasurement captureshow theneural
activity updates the velocity of the cursor from the previous time step, whereas the
closed-loop decoder (equation (5)) also includes contributions from the decoded
velocity at the previous time step (M1x̂t{1) as well as from the neural activity at the
current time step (M2ut). To compute the open-loop velocity, we first computed
the average z-scored spike counts of every neural unit in the first 200 (monkey J) or
150 (monkey L) trials of the baseline block.We binned the spike counts from300ms
to 1,300ms (monkey J) or 1,100ms (monkey L) after the beginning of each trial,
and then averaged the spike counts for all trials to the same target. Together, these
comprised 8 spike count vectors (one per target). For each of the spike count vectors,
we computed the open-loop velocity for the candidate perturbations:

xiOL~M2,Pu
i
B ð13Þ

whereui
B is themean z-scored spike count vector for the ith target.M2,P isM2,WM for

within-manifold perturbations andM2,OM for outside-manifold perturbations.
The following describes the third step in choosing a perturbation: selecting a

candidate perturbation. For each candidate perturbation, we compared the open-
loop velocities under the perturbedmapping to the open-loop velocities under the
intuitive mapping on a per-target basis. We needed the velocities to be dissimilar
(to induce learning) but not so different that the animal could not control the cursor.
For each target, wemeasured the angles between the 2D open-loop velocity vectors.
We alsomeasured themagnitude of the open-loop velocity for the perturbedmap-
ping. For each session,wedefineda rangeof angles (averageminimumof rangeacross
sessions: mean6 s.e.m, 19.7u6 7.0u; average maximum of range across sessions:
44.4u6 8.9u) and a range of velocitymagnitudes (averageminimumof range across
sessions, 0.7mms21 6 0.4mms21; average maximum of range across sessions,
5.5mm s21 6 4.0mms21). Note that when the monkey controlled the cursor in
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closed-loop (equation (5)), the cursor speeds weremuch greater than these ranges
of open-loop velocities. This is becauseM1 was nearly an identity matrix for our
experiments. Thus, the termM1x̂t{1 is expected to be larger than the termM2ut .
We found all candidate perturbations for which the angles andmagnitudes for all
targets were within the designated ranges. From the candidate perturbations that
remained after applying these criteria, we arbitrarily chose one to use as the per-
turbation for that session.
Amount of learning.This section corresponds toFig. 2c. For each session,we com-
puted the amount of learning during perturbation blocks as a single, scalar value
that incorporatedbothchanges in success rate (percent of trials forwhich the periph-
eral target was acquired successfully) and target acquisition time.We sought to use
a metric that captured how much the monkeys’ performance improved through-
out the perturbationblock relative to howmuch itwas impaired at the beginningof
the perturbation block. Having a single value for each session allowed us to more
easily compare learning across sessions and to relate the amount of learning to a
variety of properties of each perturbation (ExtendedData Fig. 6).We also analysed
each performance criterion individually for each monkey without any normaliza-
tion (ExtendedData Fig. 2).We saw consistent differences in learnability. Thus, our
results do not rely on the precise form of our learningmetric, but the formwe used
provides a scalar value as a convenient summary metric.
As success rate and target acquisition time are expressed in different units, we

first normalized eachmetric.We found themean and standard deviation of the suc-
cess rates and target acquisition times across all non-overlapping 50-trial bins in
the baseline, perturbation andwashout blocks for eachmonkey.We then z-scored
the success rates and target acquisition times separately for eachmonkey. Figure 2c
shows normalized performance projected onto veridical units.
For each session, we computed the average z-scored success rate and the average

z-scored target acquisition time across all bins in the baseline block.

PB~
sB
aB

� �
ð14Þ

wherePB is the performance, sB is the average normalized success rate and aB is the
averagenormalizedacquisition timeduring thebaselineblock (monkey J, 386.9682.5
trials; monkey L, 292.16 43.5 trials).
Wealso computed thenormalized success rates andacquisition times for all bins

in the perturbation blocks.

PP jð Þ~
sP jð Þ
aP jð Þ

� �
ð15Þ

where PP jð Þ is the performance, sP jð Þ is the normalized success rate, and aP jð Þ is
the average normalized acquisition time during the jth 50-trial bin of the perturba-
tion block.
Empirically, we observed that the monkeys’ performance during the perturba-

tion blocks did not exceed the performance during the baseline blocks. Therefore,
we define amaximum learning vector (Lmax) as a vector that extends from the per-
formance in the first binwith the perturbedmapping to the point corresponding to
baseline performance (Fig. 2c).

Lmax~PB{PP 1ð Þ ð16Þ

The length of this vector is the initial performance impairment because it describes
the drop in performance that resultedwhenwe switched from the baseline block to
the perturbation block (shown in Fig. 3a and Extended Data Fig. 6a). For each bin
(j) within the perturbation blocks, we defined a raw learning vector (Lraw jð Þ). This
vector extended from the point corresponding to initial performance during the
perturbation block to the point corresponding to performance during each bin.

Lraw jð Þ~PP jð Þ{PP 1ð Þ ð17Þ

We projected the raw learning vectors onto the maximum learning vector. These
were termed the projected learning vectors (Lproj jð Þ).

Lproj jð Þ~ Lraw jð Þ: Lmax

ELmaxE

� �
Lmax

ELmaxE

� �
ð18Þ

The lengths of the projected learning vectors relative to the lengths of the max-
imum learning vectors define the amount of learning in each 50-trial bin (Lbin jð Þ).

Lbin jð Þ~ ELproj jð ÞE
ELmaxE

ð19Þ

An amount of learning of 0 indicates that the monkey did not improve perform-
ance, and a value of 1 indicates that the monkey fully improved (up to the level
during the baseline block). For each session, we computed the amount of learning
for all bins, andwe selected the largest one as the amount of learning for that session.

Lsession~maxj Lbin jð Þð Þ ð20Þ

Figure 2c shows the raw learning vectors for one bin in each of two sessions (thick
blue and red lines), along with the projected learning vector (thin red line) and the
maximum learning vector (dashed grey line) for one of those sessions.
Principal angles between intuitive and perturbed control spaces. This section
corresponds to Fig. 3b and Extended Data Fig. 6b. The control spaces for the intu-
itive andperturbedBCImappings in our experiments were spanned by the rows of
M2 for the intuitivemapping,M2,WM forwithin-manifold perturbations andM2,OM

for outside-manifold perturbations. Because we z-scored spike counts in advance,
the control spaces for eachday intersected at the origin of theneural space. The two
principal angles38 between the intuitive and perturbed control spaces defined the
maximumandminimumangles of separation between the control spaces (Fig. 3b).
Required preferred direction changes. This section corresponds to Fig. 3c and
Extended Data Fig. 6c. One way in which learning is manifested is by changes in
how individual neurons are tuned to the parameters of the movement, in particu-
lar the preferred direction7,18. For each session, we sought to compute the required
changes in preferred direction for each neural unit that would lead to proficient
control of the cursorunder theperturbedmapping.Onepossibilitywouldbe toexam-
ine the columns ofM2 andM2,P. Each columncanbe thought of as representing the
pushing direction and pushing magnitude of one unit (that is, the contribution of
eachneural unit to the velocity of the cursor).We could simply estimate the required
change in preferred direction by measuring the change in pushing directions for
each unit between the intuitive and perturbedmappings. However, this method is
not suitable for the following reason. For outside-manifold perturbations formon-
key J,wepermutedonly a subset of the neural units.As a result, the columnsofM2,OM

corresponding to the non-permuted units were the same as inM2. By estimating the
required changed in preferred direction as the difference in directional components
ofM2 andM2,OM, we would be implicitly assuming that the monkey is capable of
identifyingwhich units we perturbed and changing only their preferred directions,
which appears to be difficult to achieve in the timeframeof a fewhours7. Therefore,
we sought amore biologically plausiblemethod of computing the required preferred
direction changes.
Using aminimal set of assumptions, we computed the firing rates that each unit

should showunder oneparticular learning strategy.Then,we computed thepreferred
direction of each unit using those firing rates and compared them to the preferred
directions during the baseline block. The following were the assumptions used to
compute the firing rates:
1. We assumed the monkeys would intend to move the cursor to each target at

the same velocity it exhibited under the intuitive mapping. Fitts’ Law predicts that
movement speeddependsonmovement amplitude and target size39, and thesewere
always the same in our experiments.
2. The firing rates for the perturbedmapping should be as close as possible to the

firing rates we recordedwhen themonkeys used the intuitivemapping. This keeps
the predicted firing rates within a physiological range and implies a plausible explo-
ration strategy in neural space.
We used the following procedure to compute the required preferred direction

changes. First, we found the average normalized spike count vector ui
B across time

points (300–1,000ms after the start of the trial) and all trials to each target (i) dur-
ing the baseline blocks. We minimized the Euclidian distance between ui

B and u
i
P,

the normalized spike count vector for the perturbedmapping (assumption 2), sub-
ject toM2u

i
B~M2,Pu

i
P (assumption1).M2u

i
B (theopen-loopvelocity for the intuitive

mapping) is known from the baseline block. For a given perturbedmapping (with
M2,P), we sought to find ui

P that would lead to the same open-loop velocity, which
has a closed-form solution:

ui
P~ui

BzMT
2,P M2,PMT

2,P

� 	{1
M2{M2,Pð Þui

B ð21Þ

For each neural unit (k), we computed its preferred direction hB kð Þ with the intu-
itive mapping by fitting a standard cosine tuning model.

uiB kð Þ~mk
: cos hi{hB kð Þð Þzbk ð22Þ

whereuiB kð Þ is the kth element ofui
B,mk is the depth ofmodulation, bk is themodel

offset of unit k, and hi is the direction of the ith target. We also computed the pre-
ferred direction of each unit for the perturbed mapping (hP kð Þ) in the same way.
Figure 3c shows histograms of

hP kð Þ{hB kð Þj j ð23Þ
averaged across all units for each session.
Estimation of intrinsic dimensionality. This section accompanies Fig. 4a–c.
During all experiments, we identified a ten-dimensional intrinsic manifold (that is,
ten factors). Offline, we confirmed this was a reasonable choice by estimating the
intrinsic dimensionality of the data recorded in eachcalibration block. For eachday,
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we performed a standard model-selection procedure to compare factor-analysis
modelswith dimensionalities ranging from2 to 30. For each candidate dimension-
ality, we used fourfold cross-validation. For each fold, we estimated the factor-
analysis model parameters using 75% of the calibration data. We then computed
the likelihood of the remaining 25% of the calibration data with the factor-analysis
model. For each dimensionality, we averaged the likelihoods across all folds. Each
day’s ‘intrinsic dimensionality’wasdefined as the dimensionality corresponding to
the largest cross-validated data likelihood of the calibration data for that day.
Measuring the cumulative shared variance explained. This section corresponds
toFig. 4d. Factor analysis partitions the sample covariance of the population activity
(cov uð Þ) into a shared component (LLT ) and an independent component (y). In
offline analyses, we sought to characterize the amount of shared variance along
orthogonal directions within the intrinsicmanifold (akin tomeasuring the lengths
of the major and minor axes of an ellipse). These shared variance values are given
by the eigenvalues ofLLT , which can be ordered from largest to smallest. Each eigen-
value corresponds to an ‘orthonormalized latent dimension’, which refers to iden-
tifying orthonormal axes that span the intrinsic manifold. Each orthonormalized
dimension is a linear combination of the original ten dimensions. The cumulative
sharedvariance curve is thus informativeof how ‘oblong’ the sharedvariance iswithin
the manifold, and it can be compared across days. By definition, the cumulative
shared variance explained reaches 100% using all ten dimensions, and none of the
independent variance (y) is explained by those latent dimensions.
Blinding. Investigator blinding was ensured because all sessions were analysed in
the sameway, by the samecomputerprogram.This parallel andautomatic treatment
of the two perturbation types eliminated investigator biases. The animalswere blinded
to the test condition delivered each day. If the animals knewwhich of the two con-
ditions theywere presentedwith, thatmight have biasedour findings. Blindingwas
achieved before-the-fact with a random and/or unpredictable ordering of experi-
ments, andafter-the-factwithcontrol analyses to ensure that conditionswerematched
as closely as we could detect.

Statistics.For the histograms in Figs 2d and3, ExtendedData Figs 1b, 2 and7a, the
significances of the differences in distributions betweenwithin-manifold perturba-
tion samples andoutside-manifoldperturbation samplesweredeterminedwith two-
tailed Student’s t-tests assumingunequal variances of the two samples.We ensured
that eachhistogram followed a normal distribution (Kolmogorov–Smirnov test). In
Extended Data Figs 1a and 3, the histograms did not follow a normal distribution
(Kolmogorov–Smirnov test). For those figures, we used theWilcoxon rank-sum test
to determine the significance of the difference in the distributions. For the linear
regressions in Fig. 4 andExtendedDataFigs 4 and 6,we determined the significance
level of the slopes being different from 0 using F-tests for linear regression. We
determined whether the difference between two slopes was significant using two-
tailed Student’s t-tests. For all tests, we used P5 0.05 as the significance threshold.
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Extended Data Figure 1 | Performance during baseline blocks.
a, Histograms of success rate during the baseline blocks on days when the
perturbation would later be within-manifold (red) and outside-manifold
(blue) for monkey J (top) and monkey L (bottom). For days with multiple
perturbation sessions, the data are coloured according to the first perturbation
type. Dashed lines, means of distributions; solid lines, mean6 s.e.m.
b, Histograms of target acquisition time during baseline blocks. Number of
days for panels a and b: within-manifold perturbations, n5 27 (monkey J),
14 (monkey L); outside-manifold perturbations, n5 31 (monkey J),

14 (monkey L). c, Sample cursor trajectories to all eight targets. At the
beginning of each day, the monkeys used the intuitive mapping for 250–400
trials. The monkeys were able to use these mappings to control the cursor
proficiently from the outset (asmeasured by success rate and acquisition time).
On all sessions, the success rateswere near 100%, and the acquisition timeswere
between 800 and 1,000ms. No performance metrics during the baseline blocks
were significantly different between within-manifold perturbation sessions
and outside-manifold perturbation sessions (P. 0.05; success rate, Wilcoxon
rank-sum test; acquisition time, two-tailed Student’s t-test).
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Extended Data Figure 2 | Changes in success rate and acquisition time
during perturbation blocks. In Fig. 2d, we quantified the amount of learning
in each session using a single metric that combined improvements in success
rate and acquisition time. Here, we consider each metric separately. In each
comparison, better performance is to the right. a, Change in success rate
from the first 50-trial bin in the perturbation block to the bin with the best
performance. The change in success rate was significantly greater for within-
manifold perturbations than for outside-manifold perturbations for monkey J
(top, P, 1023, t-test). For monkey L (bottom), the change in success rate was
greater for within-manifold perturbations than for outside-manifold

perturbations, and the difference approached significance (P5 0.088, t-test).
b, Change in acquisition time from the first 50-trial bin in the perturbation
block to the bin with the best performance. For both monkeys, the change in
acquisition time for within-manifold perturbations was significantly greater
than for outside-manifold perturbations (monkey J (top), P, 1024, t-test;
monkey L (bottom), P5 0.0014, t-test). Note that a negative acquisition time
change indicates performance improvement (that is, targets were acquired
faster). Number of within-manifold perturbations, n5 28 (monkey J),
14 (monkey L); outside-manifold perturbations, n5 39 (monkey J),
15 (monkey L).
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Extended Data Figure 3 | After-effects during washout blocks. After 600
(monkey J) or 400 (monkey L) trials using the perturbed mapping, we
re-introduced the intuitive mapping to observe any after-effects of learning.
We measured the after-effect as the size of the performance impairment at
the beginning of the washout block in the same way that we measured the
performance impairment at the beginning of the perturbation block.
A larger after-effect indicates more learning had occurred in response to the
perturbation. For monkey J (left), the after-effect was significantly larger for

within-manifold perturbations (red) than for outside-manifold perturbations
(blue) (Wilcoxon rank-sum test, P, 1023). For monkey L (right), the trend is
in the same direction as monkey J, but the effect did not achieve significance
(Wilcoxon rank-sum test, P. 0.05). These data are consistent with the
hypothesis that relatively little learning occurred during the outside-manifold
perturbations in comparison to the within-manifold perturbations. Number of
within-manifold perturbations, n5 27 (monkey J), 14 (monkey L); outside-
manifold perturbations, n5 33 (monkey J), 15 (monkey L).
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Extended Data Figure 4 | Learning did not improve over sessions. It might
have been that, over the course of weeks and months, the animals improved
at learning to use perturbed mappings, either one type or both types together.
This did not occur.Within-manifold perturbations showedmore learning than
outside-manifold perturbations across the duration of experiments. Animals

did not get better at learning to use either type of perturbation separately
(red and blue regression lines, F-test, P. 0.05 for all relationships) nor when
considering all sessions together (black regression line, F-test for linear
regression, P. 0.05). Same number of sessions as in Extended Data Fig. 2.
Each point corresponds to one session.
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Extended Data Figure 5 | Hand speeds during BCI control and hand
control. We loosely restrained the monkeys’ arms to the chair’s armrests
during experiments. The monkeys minimally moved their hands, but the
movements did not approach the limits of the restraints. a, Average hand
speeds across all trials in all sessions for the baseline blocks (left column),

within-manifold perturbation blocks (middle column), and outside-manifold
perturbation blocks (right column) for monkey J (top row) and monkey L
(bottom row). b, Average hand speed during a typical point-to-point reaching
task (monkey L). Thus, the handmovements for the BCI tasks are substantially
smaller than for the reaching task.
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Extended Data Figure 6 | Accounting for within-class differences in
learning. a, Relation between amount of learning and initial impairment in
performance for monkey J (top) and monkey L (bottom). Each point
corresponds to one session. Lines are linear regressions for the within-manifold
perturbations and outside-manifold perturbations. *Slope significantly
different than 0 (F-test for linear regression, P, 0.05). b, Relation between
amount of learning and mean principal angles between control spaces for
perturbed and intuitive mappings. c, Relation between amount of learning and
mean required preferred direction (PD) change. Same number of sessions as in
Extended Data Fig. 2. Figure 3 showed that the properties of the perturbed
mappings (other than whether their control spaces were within or outside the
intrinsic manifold) could not account for differences in learning between the
two types of perturbation. However, as is evident in Fig. 2d, within each type of
perturbation, there was a range in the amount of learning, including some
outside-manifold perturbations that were learnable5,7. In this figure, we
examined whether learning within each perturbation type could be accounted
for by considering other properties of the perturbedmapping.We regressed the

amount of learningwithin each perturbation type against the various properties
we considered in Fig. 3. Panel a shows the initial performance impairment
could explain a portion of the variability of learning within both classes of
perturbation for monkey J. That monkey showed more learning on sessions
when the initial performance impairment was larger. For monkey L, the initial
performance impairment could account for a portion of the within-class
variation in learning only for outside-manifold perturbations; this monkey
showed less learning when the initial performance impairment was larger. We
speculate that monkey J was motivated by more difficult perturbations while
monkey L could be frustrated by more difficult perturbations. Panel b shows
that the mean principal angles between control planes were related to learning
within each class of perturbation for monkey L only. Larger mean principal
angles between the control planes led to less learning. Panel c shows that the
required PD changes were not related to learning for either type of perturbation
for both monkeys. This makes the important point that we were unable to
account for the amount of learning by studying each neural unit individually.
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Extended Data Figure 7 | Offline analyses of intrinsic manifold properties.
a, The intrinsic dimensionalities for all sessions for monkey J (left) and
monkey L (right). For both monkeys, the intrinsic dimensionalities were not
significantly different between days when we performed within-manifold
perturbations and days when we performed outside-manifold perturbations
(t-test, P. 0.05). Dashed lines, means of distributions; solid lines,
mean6 s.e.m. Same number of days as in Extended Data Fig. 1. b, Relation
between intrinsic dimensionality and the number of data points used to
compute intrinsic dimensionality. For each of 5 days (one curve per day), we
computed the intrinsic dimensionality using 25%, 50%, 75% and 100% of the
total number of data points recorded during the calibration block. As the
number of data points increased, our estimate of the intrinsic dimensionality
increased in a saturating manner. c, Tuning of the raw factors. These plots
exhibit the factors that were shuffled during within-manifold perturbations.
We show for one typical day the average factors (̂z) corresponding to the ten
dimensions of the intrinsic manifold over a time interval of 700ms beginning
300ms after the start of every trial. Within each row, the coloured bars indicate
the mean6 standard deviation of the factors for each target. The line in
each circular inset indicates the axis of ‘preferred’ and ‘null’ directions of the
factor. The length of the axis indicates the relative depth of modulation. The
tuning is along an axis (rather than in a single direction) because the sign of
a given factor is arbitrary. d, Tuning of the orthonormalized factors. Same
session and plotting format as c. The orthonormalized dimensions are ordered
by the amount of shared variance explained, which can be seen by the variance
of the factors across all targets. Note that the axes of greatest variation are
separated by approximately 90u for orthonormalized dimensions 1 and 2.
This property was typical across days. The retrospective estimate of intrinsic
dimensionality (Fig. 4 and Extended Data Fig. 7a) may depend on the richness
of the behavioural task, the size of the training set (Extended Data Fig. 7b),

the number of neurons, the dimensionality reductionmethod and the criterion
for assessing dimensionality. Thus, the estimated intrinsic dimensionality
should only be interpreted in the context of these choices, rather than in
absolute terms. The key to the success of this experiment was capturing the
prominent patterns by which the neural units co-modulate. As shown in
Fig. 4d, the top several dimensions capture the majority of the shared variance.
Thus, we believe that our main results are robust to the precise number of
dimensions used during the experiment. Namely, the effects would have
been similar as long as we had identified at least a small handful of dimensions.
Given the relative simplicity of the BCI and observation tasks, our estimated
intrinsic dimensionality is probably an underestimate (that is, a richer task
may have revealed a larger set of co-modulation patterns that the circuit is
capable of expressing). Even so, our results suggest that the intrinsic manifold
estimated in the present study already captures some of the key constraints
imposed by the underlying neural circuitry. The probable underestimate of
the ‘true’ intrinsic dimensionality may explain why a few nominal outside-
manifold perturbations were readily learnable (Fig. 2d). It is worth noting that
improperly estimating the intrinsic dimensionality would only have weakened
the main result. If we had overestimated the dimensionality, then some of
the ostensiblewithin-manifold perturbationswould actually have been outside-
manifold perturbations. In this case, the amount of learning would tend to
be erroneously low for nominal within-manifold perturbations. If we had
underestimated the dimensionality, then some of the ostensible outside-
manifold perturbations would actually have been within-manifold
perturbations. In this case, the amount of learningwould tend to be erroneously
high for outside-manifold perturbations. Both types of estimation error would
have decreased the measured difference in the amount of learning between
within-manifold perturbation and outside-manifold perturbations.
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