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SUMMARY
How are we able to learn new behaviors without disrupting previously learned ones? To understand how the
brain achieves this, we used a brain-computer interface (BCI) learning paradigm, which enables us to detect
the presence of amemory of one behavior while performing another. We found that learning to use a new BCI
map altered the neural activity that monkeys produced when they returned to using a familiar BCI map in a
way that was specific to the learning experience. That is, learning left a ‘‘memory trace’’ in the primary motor
cortex. This memory trace coexisted with proficient performance under the familiar map, primarily by altering
neural activity in dimensions that did not impact behavior. Forming memory traces might be how the brain is
able to provide for the joint learning of multiple behaviors without interference.
INTRODUCTION

How can the brain storemultiple memories without interference?

For example, suppose an experienced skier learns to snow-

board. Skiing and snowboarding require different sets of muscle

activations, driven by different neural population activity pat-

terns, to achieve the same goal of getting down the mountain

without falling. How is knowledge about how to snowboard

incorporated without overwriting the ability to ski? An intriguing

possibility is that the memory of the recently learned task leaves

a ‘‘memory trace’’: an alteration of neural activity that allows the

brain to simultaneously support thememory of the newly learned

task and the performance of the familiar task. Here, we distin-

guish a memory trace from the memory itself, in that the memory

trace is specifically observable in the altered firing of neural pop-

ulations and may be observed in more areas than those in which

the memory is stored.

Motor learning alters neural activity in multiple brain regions,

including the cerebellum,1 hippocampus,2 spinal cord,3 basal

ganglia,4 and motor cortical areas.5–10 New learning can be re-

tained for hours,11 days,12 and even decades,13 without major

disruption from the performance of other skills. Motor learning

retention has been observed across various behaviors,

including visuomotor adaptation,14 finger dexterity,15 non-
Curr
intuitive sensory-motor mappings,16–18 and rhythmic tasks.13

Beyondmotor learning, the brain integrates new learning along-

side existing memories during rule learning,19–23 perceptual

learning,24–26 fear conditioning,27,28 and more.

Howmight the integration of new learning proceed without im-

pacting the performance of already-familiar behaviors? Consider

how neural population activity might change when our experi-

enced skier goes skiing, then learns to snowboard, and then

returns to skiing (Figure 1A). One possibility is that the neural ac-

tivity used for skiing remains unchanged after learning to snow-

board. In this scenario, the new neural activity for snowboarding

would only be recalled when snowboarding again. Such context-

dependent recall has been observed in certain learning settings,

such as the remapping of hippocampal place-fields between en-

vironments,29 and has been proposed as a potential mechanism

for motor memory storage.30 A second possibility is that the neu-

ral activity used for skiing is actually altered by the recently ac-

quired ability to snowboard. Several studies have suggested

this to be the case, as neural tuning has been observed to

change after motor adaptation.5,31–34 What is unclear from the

previous studies is whether these changes relate directly to the

learned behavior. An intriguing possibility is that they constitute

a memory of the learning experience. That is, learning could

lead to a memory trace, which we define as an alteration of the
ent Biology 34, 1519–1531, April 8, 2024 ª 2024 Elsevier Inc. 1519
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Figure 1. How learning could leave a memory trace in neural population activity

(A) Schematic of how neural activity (colored dots) may change when performing different tasks. Performing the familiar task for the first time (light red; familiar

task 1), then the new task (blue), then the familiar task again (dark red; familiar task 2) may each yield distinct population activity patterns.

(B) There are many different population activity patterns that can be appropriate for the same task (red oval for the familiar task, blue oval for the new task). We

consider the possibility that the activity patterns when reperforming the familiar task after learning the new task are appropriate for both the familiar task and the

new task (purple intersection). We refer to this as a memory trace.

(C) The activity of �90 neural units recorded in the primary motor cortex (M1) was translated into movements of a computer cursor using a BCI. A BCI directly

relates neural activity to behavior (the horizontal and vertical velocities of the cursor) using a map specified by the experimenters. Specifically, only the 10 di-

mensions of greatest shared variance in the neural population dictate how the cursor moves (see STAR Methods).

(D) Target acquisition times for a representative session (N20160714). The monkey first used the familiar map to control the cursor proficiently (light red, familiar

task 1). We then switched to the new map, which the monkey had not used before, and target acquisition times abruptly increased (dark blue, new task). The

monkey learned to use the new map through trial and error (dark blue, decreasing target acquisition times). Finally, the familiar map was reinstated (dark red,

familiar task 2). We focus on this second familiar map period for identifying whether there exists a memory trace. For visualization, acquisition times were

smoothed with a causal 25-trial moving window and are not shown for the first 8 trials of each task. Success rates were 100% for all three tasks of this example

session.

See also Figure S1.
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population activity patterns used to perform familiar tasks in a

manner that renders them also appropriate for a newly learned

task (Figure 1B). However, it is also possible that the neural

changes that accompany learning could be due to any one of

the many task-agnostic factors that can influence neural activity

in the motor system, such as changes in arousal,35,36 motiva-

tion,37 posture,38 altered arm dynamics,32,33 or learning-related

changes that do not constitute a memory.

To assess if any changes in neural activity after learning are

directly related to the newly learned ability, we need a way to

determine the suitability of neural population activity for a given

behavioral task. This is challenging in experiments using arm

movements because the causal relationship between neural ac-

tivity and behavior is not typically known. To address this chal-

lenge, we utilized a brain-computer interface (BCI) paradigm

(Figure 1C; 10,39–45). In a BCI, we specify the causal mapping be-

tween the recorded neural activity and behavior (in this case, the

movement of a computer cursor). We can then assess the suit-

ability of neural activity for a BCI task that is not being performed,

which enables us to detect a memory trace, if it is present. We
1520 Current Biology 34, 1519–1531, April 8, 2024
used two different BCI maps in each experimental session (Fig-

ure 1D). Much like the example of an experienced skier learning

to snowboard, amonkey first controlled a computer cursor using

a familiar map (familiar task 1) and then learned how to use a new

map (new task). Following learning, we reinstated the familiar

map (familiar task 2). It is during familiar task 2 that we can

assess whether or not a memory trace is formed by examining

whether that neural activity is suitable for the recently learned

new map.

We found that learning leaves a memory trace in the primary

motor cortex (M1). That is, after the monkey learned to control

the cursor using the new map, the neural activity that the mon-

key produced to control the cursor under the familiar map re-

flected the learned experience by becoming more suitable for

the new map than it was prior to learning. Furthermore, we

found that this memory trace coexisted alongside proficient

familiar map performance by altering neural activity in a manner

that did not interfere with the subsequent behavior. We specu-

late that the formation of memory traces may allow for the

learning of multiple motor skills without interference and enable
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the rapid relearning of motor skills that characterizes motor

savings.46

RESULTS

Here, we assess the formation of a memory trace by studying

how learning to perform a new task affects the neural activity

produced for a familiar task. We trained three monkeys to

perform an eight-target center-out task using a BCI. The mon-

key’s goal on each trial was to guide a computer cursor to an in-

structed target by modulating its neural activity (see STAR

Methods). Notably, the arm of the monkey did not move

throughout the experiment.43 Only the recorded neural activity

dictated cursor movement. Our BCI maps involved a two-step

procedure. First, at each time step (45ms), the activity of 90 neu-

ral units in primary M1 was projected into a ten-dimensional

(10D) space that captured the majority of the variance shared

among the neural units. Second, the activity of these 10 dimen-

sions was used to drive a Kalman filter that determined the cur-

sor’s 2D velocity. Each experiment utilized two different BCI

maps, the ‘‘familiar map’’ and the ‘‘new map’’, presented across

three blocks of trials.

During the first block (‘‘familiar task 1’’), the monkey used the

familiar map, which allowed for proficient cursor control without

any learning (i.e., it was intuitive for the monkey to use; see Fig-

ure 1D). For the second block (‘‘new task’’), we changed the BCI

map to the new map, which the monkey had never used before

(see STAR Methods). This resulted in an initial decrement in the

monkey’s performance, which improved over the course of

several hundred trials as he learned to control the cursor. The

new map was selected to be a ‘‘within-manifold perturbation’’

(WMP), which we previously showed was well-learned within a

single-day session.43,47 A WMP changes how each of the 10

latent dimensions of neural activity influences the cursor velocity

(see Figure S1 for details). Notably, the perturbation is applied in

the 10D latent space rather than the animal’s 2D workspace and

thus can result in different behavioral impacts for each of the 8

targets in the workspace. In the third block (‘‘familiar task 2’’),

we reinstated the familiar map. This typically resulted in the

well-known aftereffect that follows a bout of motor learning, after

which performance returned to a level comparable to that of

familiar task 1.48 Data from the periods called familiar task 1

and new task have been examined in our prior work.36,43,47,49

In this study, we now focus on the neural activity recorded during

familiar task 2 to look for a memory trace.

Although themonkey uses the familiar map to control the com-

puter cursor, we can evaluate how appropriate that same neural

activity is for the new map (Figure 2A). This is the key advantage

of a BCI that enables us to probe for the existence of a memory

trace. Many different population activity patterns can be equally

suitable for the familiar map (Figure 2B; 49,50), due to neural

redundancy (see Figure S2). Among these sets of redundant

population activity patterns, some may be better for the new

map than others. We will leverage the ability to evaluate neural

activity through the offlinemap to test for the presence of amem-

ory trace.

Our central question is: how does learning the new map affect

the neural activity produced while using the familiar map?

We consider three possibilities for what neural activity might
look like after behavior stabilizes during familiar task 2. One pos-

sibility is that, after learning, the population activity patterns

produced during familiar task 2 are similar to those produced

during familiar task 1 (reversion, Figure 2C). Reversion has

been observed in various contexts, such as reaching tasks,32,33

reaching in conjunction with BCI learning,51 BCI tasks in visual

cortex,45 and in the remapping of hippocampal place-fields.29

This would indicate that the neural activity we observed in M1

during performance of a task can remain unaffected by an inter-

vening learning experience.

A second possibility is that neural activity changes in amanner

agnostic to the learning experience (representational drift, Fig-

ure 2D). Representational drift52–56 could occur alongside profi-

cient task performance due to many different activity patterns

corresponding to the same behavioral output.49,50 This drift

could be attributed to any number of uncontrolled factors,

such as arousal35 or engagement.36

A third possibility is that neural activity differs between familiar

task 2 and familiar task 1 in a manner that is directly related to

having learned the new task (‘‘memory trace,’’ Figure 2E). We

consider the possibility that neural activity changes to support

the memory of the learned task while simultaneously supporting

accurate cursormovement during familiar task 2. In this case, the

neural activity produced during familiar task 2 would be more

appropriate for the new map than that produced during familiar

task 1.

We start by considering the reversion hypothesis. We asked

whether the same population activity patterns were used during

both familiar task 1 and familiar task 2. We observed that, for

many targets, neural activity during familiar task 1 and familiar

task 2 occupied different regions within the neural population

space (Figure 3A), in contradiction to Figure 2C. Similarly, we

observed changes in neuronal tuning between familiar task 1

and familiar task 2 (Figure S3), as seen in previous arm move-

ment studies5,31 (however, see other studies33,57). Thus, our

data are not consistent with the reversion hypothesis (Figure 3B).

Next, we attempt to distinguish the memory trace hypothesis

from the representational drift hypothesis. To do so, we must

evaluate how the observed changes in neural activity relate to

the previously learned behavior. Our BCI approach makes this

possible. To illustrate this analysis, we compare neural activity

from a single trial during each of familiar task 1 and familiar

task 2 corresponding to the same target (Figure 4A, top). For

the neural activity produced at each timestep, we can evaluate

its ‘‘progress’’ through the familiar map as the extent to which

it moves the cursor toward the target (see STARMethods). Prog-

ress has units of cursor velocity (mm/s) and thus gives us a

behavioral readout at the time resolution of a single timestep

(45 ms). During both familiar task 1 and familiar task 2, the

familiar map determines cursor velocity, and the monkeys

showed proficient control of the cursor (i.e., large progress

values) during both tasks (Figures 4B and S2E). Note that, during

the new task, the new map determines cursor velocity, and

learning can be observed by the straightening of cursor trajec-

tories and the increase of progress values with practice

(Figures S4A–S4C). These changes were not due to different

neural subpopulations being employed for each map (Fig-

ure S4D), but rather they emerged when the entire neural popu-

lation worked together in a new way.
Current Biology 34, 1519–1531, April 8, 2024 1521



Orth
og

on
al 

to

bo
th

 M
ap

s

B
N

eu
ro

ns
A

Time

Offline New Map

Online Familiar Map

Cursor

Target

Familiar
Map

N
ew

M
ap

Better foff r
New Map

Better for
Familar Map

Equally good 
for Fam

iliar M
ap

Dim. 1

D
im

. 2

C DReversion
Hypothesis

Representational Drift 
Hypothesis

E Memory Trace
Hypothesis

Familiar Task 1

Familiar Task 2
Better for
New MapFamiliar

Task 1

No Difference
for New Map

Familiar
Task 2

Familiar
Task 1

Familiar
Task 2

Dim
. N

Figure 2. Leveraging a BCI to probe the existence of a memory trace

(A) The online BCI map dictates cursor movement. The same neural activity can also be interpreted with respect to an offline BCI map that did not determine

cursor movement. During familiar task 1 and familiar task 2, the online map is the familiar map.

(B) Schematic of BCI maps in population activity space. The projection of neural activity onto a given BCI map (online or offline) determines how appropriate the

activity is for that map. For example, many different population activity patterns (vertical dotted line) are projected to the same point and are thus equally good, for

the familiar map. However, those same activity patterns are not all equally good for the newmap; those near the top of the dashed line are better for the newmap

than those near the bottom. For illustrative purposes, we show a 2D neural spacemapped to a 1D cursor velocity. In the actual experiments, the neural spacewas

�90D, which was mapped to a 2D cursor velocity.

(C–E)We explore three possibilities for where neural activity might reside during familiar task 2. (C) Reversion hypothesis: familiar task 2 neural activity is similar to

that used during familiar task 1. (D) Representational drift hypothesis: familiar task 2 neural activity is different from that used during familiar task 1, but not in a

manner that influences performance through the newmap in a systematic way. We show a stylized three-dimensional (3D) space, with an axis (black line) coming

out of the page to illustrate how neural activity could change along a dimension orthogonal to both the familiar map and the new map. (E) Memory trace hy-

pothesis: familiar task 2 neural activity contains a memory trace, whereby neural activity is more appropriate for the new map than it was during familiar task 1.

See also Figure S2.
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Since we are using a BCI, progress can also be calculated for

the new map even when the animal is using the familiar map to

control the cursor. Progress under the new map measures the

extent to which a given population activity pattern would have

moved the cursor toward the target had the new map been

instantiated. During familiar task 1, the monkeys exhibited

low progress through the new map, as the velocities through

the new map were small and haphazardly oriented relative to

the target (Figure 4A, bottom, familiar task 1). This is expected

because the monkey had not yet experienced the new map,

and the new map was selected to be difficult to control using

the familiar map’s neural activity.43 By contrast, during familiar

task 2, the velocities through the new map were higher and

more directed toward the target than they were during familiar

task 1 (Figure 4A, bottom, familiar task 2); that is, they show

higher progress (Figure 4C). This occurred despite the fact that

the new map had no influence on behavior during familiar task
1522 Current Biology 34, 1519–1531, April 8, 2024
2, and thus the monkeys had no external incentive while per-

forming familiar task 2 to maintain high progress through the

new map. We define the memory trace as the average increase

in the progress toward a given target when passing the recorded

neural activity through the new map during familiar task 2, rela-

tive to familiar task 1. We found that the progress through the

new map tended to be larger during familiar task 2 than familiar

task 1, yielding a positive memory trace (Figures 4D and 4E; see

also Figure S4F). This finding supports thememory trace hypoth-

esis (Figure 2E), but not the representational drift hypothesis

(Figure 2D), which would predict more variable new map prog-

ress across sessions rather than consistently higher new map

progress.

In a minority of targets, the animal exhibited a memory trace

value below zero, indicating that neural activity during familiar

task 2was less suitable for the newmap than itwasduring familiar

task 1. To understandwhy thismight occur, we found that targets
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(A) A view of the population neural activity for one

example target (J20120601; target 270+) across all

three task periods. We applied linear discriminant

analysis (LDA) to find the plane that best separates

the neural activity from the three task periods. Ac-

tivity is projected onto that plane, with mean and
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the dimensions of highest shared variance provides

similar results (Figure S3A).
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See also Figure S3.
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with a negativememory trace exhibited substantially less learning

compared with those with a positive memory trace (monkey J,

P = 2:223 10� 10, two-sided unpaired Wilcoxon sign-rank test;

monkey N, P = 0:0048; monkey L, P = 0:00051). When more

learning occurred, the memory trace tended to be larger (Fig-

ure 4F). As monkeys J and N generally showed more learning

than monkey L, this could explain why the memory traces for

monkeys J and N tended to be larger than that of monkey L

(Figure 4F).

We considered whether recording instabilities could lead to an

apparent memory trace. This is unlikely to be the case. As a first-

order approximation, recording instabilities are likely to result in a

global shift in neural activity. Even if thiswere tosometimesbenefit

performance on a particular target, due to the linearity of the BCI

mappings, we would expect to see a decline in performance on

the opposing target. Instead, we see positive memory traces

when averaging across targets within each session (Figure 4E),

indicating the changes in neural activity were learning specific.

We next assessed two properties that would make memories

useful. The first property is that amemory should persist, meaning

that it is present in neural activity without dissipating as time

passes. To test whether this was true of the memory trace, we

took the sessions with the most trials of familiar task 2 and exam-

ined whether the memory trace was still present at the end of the

familiar task 2 period (Figure 5A). We found the memory trace

was consistently present at the end of these longer familiar task

2 periods (Figure 5B). Furthermore, the memory trace remained

positive for the duration of most experimental sessions

(Figure S5A).

Thesecondpropertyof amemory is that it shouldcoexist along-

side proficient performance of other tasks. We define ‘‘coexist’’

here to indicate that themonkey is able to produce neural activity

that simultaneously achieves high performance through both

maps. To assess this, we examined whether the size of themem-

ory trace was contingent on how proficient the behavior was dur-

ing familiar task 2 (Figure 5C). Behavior during familiar task 2 was

variable and typically a little worse than during familiar task 1 (Fig-

ure S2E). This is not surprising, considering these long experi-

ments might lead to both mental fatigue and also satiation. We

can harness this variability to assess whether there might be a

trade-off between the strength of the memory trace and familiar
task performance. If the instances with worse behavioral perfor-

manceduring familiar task2had the largestmemory trace, it could

suggest that the memory trace arises due to a trade-off in perfor-

mance through the two BCI maps. Alternatively, if the memory

trace were present even when behavioral performance during

familiar task 2 returned to the levels seen during familiar task 1,

it would suggest that the memory trace can coexist without hin-

dering the monkey’s ability to perform the familiar task. We found

that targets with the best behavioral performance during familiar

task 2 showed a memory trace that was as strong as (or stronger

than) that of targets with worse behavioral performance during

familiar task 2 (Figures 5D, S5B, and S5C). These results indicate

thememory trace coexists alongside proficient behavioral perfor-

mance of the familiar task and does not represent a compromise

between the two learned behaviors.

How can a memory trace coexist without degrading behavior

during the re-performance of a familiar task? To understand this,

we considered how the changes in neural activity induced by

learning the new map relate to the familiar map. Because there

are more dimensions of neural activity than there are of cursor

movement, not all changes in neural activity affect cursor move-

ment. We refer to changes in neural activity that affect cursor

movement as ‘‘output-potent’’ with respect to that map, and

changes that do not as ‘‘output-null.50’’ Because the familiar

map and the new map do not share the same output-potent

space, it is possible to have neural changes that affect cursor

movement through one map without impacting cursor move-

ments through the other map.

We examined whether the memory trace of the new map (Fig-

ure 6A) resides in the output-potent or output-null space of the

familiar map (Figure 6B) by decomposing the memory trace

into its output-potent and output-null components (Figure 6C).

We found that the memory trace resides predominantly in the

output-null space of the familiar map (Figures 6D and 6E). This

means the memory trace resides primarily in dimensions that

do not influence task performance under the familiar map (Fig-

ure S6A). Furthermore, the size of the memory trace could not

be explained by the angle between the familiar map and the

new map (Figure S6B).

Lastly, we asked, how does the monkey arrive at the familiar

task 2 solution? There are two possibilities. The first possibility
Current Biology 34, 1519–1531, April 8, 2024 1523
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is that there is a partial ‘‘unwinding’’ of the learning that occurred

during the new task. This would suggest that the solution

used during familiar task 2 is not novel and was employed some-

time during the learning experience. If this were true, we would

expect that the path neural activity takes from the end of the

new task to the end of the familiar task 2 (i.e., ‘‘the path of

washout,’’ red arrow in Figure 7A) would retrace the path that

neural activity takes from the end of familiar task 1 to the end of

the new task (i.e., ‘‘the path of learning,’’ blue arrow in Figure 7A).

Theother possibility is that thepathofwashout is distinct from the

path of learning (Figure 7B). This would imply that the solution the

monkey uses during familiar task 2 is novel. To differentiate be-

tween these possibilities, we calculated the angle formed be-

tween the path of learning and the path of washout (see STAR

Methods). We found that the path of washout is distinct from

the path of learning (Figure 7C). Thus, relearning the familiar

task is not simply the forgetting of learning the new task. In other

words, the neural activity does not unwind during washout, but

rather a novel solution to the task is found.

DISCUSSION

We studied how the brain can retain a memory of a newly

learned motor task without compromising the performance of

familiar tasks. We considered that learning may leave a mem-

ory trace observable in M1 population activity, such that neural

activity remains appropriate for the learned task after the ani-

mal resumes performing a familiar task. A BCI enables new

insight into the longstanding question of the joint consolidation

of multiple skills. This is because using a BCI allows us to

assess the extent to which the same neural activity is suitable

for a task that is currently being performed and another task

that is not actively being performed. We found that the neural

activity produced while using a familiar map after learning a

new map was better for the new map compared with before

the learning experience. This memory trace of the learned

map resided primarily in dimensions of population activity

space which were output-null to the familiar map. In this way,

neural activity simultaneously supported memory of the

recently learned map without compromising behavioral perfor-

mance through the familiar map.

What is the utility of maintaining a memory trace in neural

population activity? A memory trace could enable proficient
(B) Average progress through the online familiar map for each trial to the target sho

not different between familiar task 1 and familiar task 2 (P = 0:43, two-sided unp

progress for the trials shown in (A). Triangles above the histograms denote the m

(C) Average progress through the offline new map for each trial to the target show

target. For this target, there was higher progress through the new map during fa

14.49 mm/s (P = 0:0077, two-sided unpaired Wilcoxon rank-sum test). (D) The

sessions and all three monkeys. On average, the memory trace was positive (P

Note that the memory trace can be negative, which indicates that progress throu

(E) The average memory trace per session was positive (P = 4:253 10� 5, n = 4

(F) The size of the memory trace was correlated with the size of learning (monkey

0:29;P = 1:233 10� 8;n = 96; monkey L, R2 = 0:13;P = 0:0017;n = 72; see F

the marginal distribution of each quantity. The amount of learning was positive fo

paired Wilcoxon sign-rank test, n = 176 targets; monkey N, P< 10� 10, n = 96; P

monkeys J and N, but not significantly different from zero for monkey L (right marg

rank test, n = 176 targets; monkey N, P = 1:993 10� 6, n = 96; monkey L, P =

See also Figure S4.
performance to be reached more quickly upon re-exposure to

the learned task. This phenomenon, known as savings, has

been frequently observed in motor learning behavior and is

often taken as evidence that a memory formed.30,58 Savings

could be observed in two ways: performance could either start

off immediately better upon re-exposure, or performance could

show an improved rate of improvement on re-exposure. Our

finding that neural activity remains more appropriate for the

new map during familiar task 2 could enable savings through

the first mechanism, allowing performance to start from a bet-

ter position. Our results do not speak to whether there would

also be savings in the form of an increased rate of improvement

during re-exposure.

It is not a given that learning would leave a trace detectable in

M1. For example, one could imagine that motor memories might

be stored through synaptic weight changes in any number of

brain areas, and only when a pattern of errors is experienced

might they lead to a context-dependent recall of the appropriate

action.30,45 Instead, we found that amemory tracewas evident in

M1 during the performance of other actions. Our results do not

rule out that context-dependent recall might be operating in par-

allel with the memory trace we observe. Similarly, our results do

not speak to whether a memory trace would also be observable

in brain areas outside of M1.

Motor memory consolidation refers to, among other things,59

the process through which motor memories can become less

susceptible to interference over time.12,58 This consolidation

process can take several hours to complete,11 may necessitate

continued practice,60,61 and has been suggested to involve

M1.62–64 How might the brain bridge from the short-timescale

retention of a memory trace that we studied here to the longer-

timescale consolidation of a motor memory?11,44,65 Our results

focused on the short-term inception of a motor memory within

an hour or so of the learned experience. Three possibilities would

be consistent with our results. First, a long-term consolidated

memory might resemble the memory trace we observed here.

Second, it might be that the memory trace we observed is only

a short-term phenomenon in M1, dissipating after consolidation.

Finally, it could be that with further practice with both maps over

many days, the neural activity evolves66,67 to lead to even greater

coexistence between the two behaviors.68,69

Many neurons contributed to the memory trace (Figure S4D).

This coding scheme contrasts with the hippocampus, where a
wn in (A). Task performance, measured by progress (see STARMethods), was

aired Wilcoxon rank-sum test). Dots on the horizontal axis denote the average

ean of each distribution.

n in (A). The difference in average progress defines the memory trace for that

miliar task 2 than there was during familiar task 1, yielding a memory trace of

memory trace for each of the eight targets per session, aggregated across all

= 2:533 10� 8, n = 344 targets, two-sided paired Wilcoxon signed-rank test).

gh the new map is worse during familiar task 2 than familiar task 1.

3 sessions, two-sided paired Wilcoxon signed-rank test).

J, R2 = 0:25;P< 10�10, one-sided F test, n = 176 targets; monkey N, R2 =

igure S4E for same plot colored by experimental session). We then considered

r all three monkeys (top marginal histograms; monkey J, P< 10� 10, two-sided

= 3:213 10� 9, n = 72 targets). The memory trace per target was positive for

inal histograms; monkey J, P = 1:573 10� 4, two-sided pairedWilcoxon sign-

0:61, n = 72).
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sparse subset of neurons can encode the memory.27 We

observed that the memory trace was primarily due to changes

in neural activity orthogonal (i.e., output-null) to the familiar

task. Notably, the utilization of different subsets of neurons in

hippocampus to encode memories is a special case of orthog-

onal representations in population activity space.29 Recent

studies have proposed that the hippocampus,70,71 auditory cor-

tex,72 and prefrontal cortex73,74 also use orthogonal subspaces

to incorporate multiple memories without interference. Avoiding

interference may be harder in the spinal cord, where there are

fewer neurons than in cortex. As fewer neurons likely lead to a

more constrained encoding space, a ‘‘negotiated equilibrium’’

betweenmultiple learned behaviorsmay be required in the spinal

cord.75

Skill acquisition and adaptation are distinct aspects of motor

learning. Skill acquisition focuses on gaining a new ability by

developing and refining complex motor actions and techniques,

often incorporating multiple sensory inputs and motor outputs. It

generally necessitates a longer time for learning, consolidation,

and retention.15 Motor adaptation, by contrast, involves quickly

adjusting motor actions to compensate for environmental
1526 Current Biology 34, 1519–1531, April 8, 2024
changes, such as recalibrating sensory-motor mappings76 or

adapting to altered dynamical environments.48 Both types of

learning lead to memory formation, though they may have

different mechanisms of doing so. Learning WMPs, as examined

in this study, may harness neural mechanisms that are more

similar to those used during adaptation learning than skill

learning,10,43 though precisely how BCI learning relates to the

learning of reaching movements is still an open question.77

Our finding of a memory trace in BCI learning may reveal a

general phenomenon that is also present for motor learning

with the arm and hands. In classic studies,5,31 the activity of in-

dividual neurons in M1 was shown to change with motor

learning. These changes were hypothesized to be consistent

with a mechanism akin to the memory trace mechanism we

have shown here.68 More recently, Sun and colleagues also

observed systematic changes in neural activity related to the

learning experience.34 Although learning an arm-reaching task

in a curl force field, animals exhibited a ‘‘uniform shift’’ in prepa-

ratory neural activity that persisted after the force field was

removed. The authors conjecture that this shift indexes motor

memories.78 It is conceivable that the memory trace shares
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similar properties to the uniform shift observed in Sun et al.,34 as

both are shifts that occur during learning that remain in popula-

tion activity during washout. One key advance of our findings

is that we show that this shift is beneficial for performing the

learned task. It is intriguing to speculate whether the uniform

shifts observed by Sun et al. modify preparatory activity to

become more appropriate for the learned task and could, in

that sense, constitute a memory trace.

There is mounting evidence that learning and control of a BCI

employ similar underlying neural mechanisms as during arm

movements.77,79 For instance, the formation of internal (forward)

models, which involve predicting and compensating for the sen-

sory feedback of a motor command in subsequent commands,

has been observed in both BCI experiments80 and arm move-

ment tasks.81 Furthermore, studies have found that learning in

BCI contexts can facilitate learning in arm movement tasks,51

suggesting that the two tasks share common neural substrates.

BCI learning has also been shown to engage subcortical areas,

such as the striatum,41 which is known to be involved in motor

learning and control. Our results using BCI provide empirical ev-

idence supporting theoretical results of sensorimotor learning68

and align with similar principles in the spinal cord.75
Human and animal learners distinguish themselves from cur-

rent artificial learning systems in that they can learn to perform

a large number of different behaviors and flexibly switch among

them. It is a notoriously challenging problem for artificial agents

to learn new tasks without overwriting the ability to perform pre-

viously learned tasks, an effect termed ‘‘catastrophic forget-

ting.’’82–85 Our findings suggest that artificial learning systems

could overcome catastrophic forgetting by implementing some

of the same learning principles employed by biological learning

systems.86,87 A sufficiently high dimensional activity space, uti-

lized effectively for the storage of multiple memories without

interference, may be important not only in the brain but also for

artificial agents learning multiple tasks without interference.
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Detailed methods are provided in the online version of this paper
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licly available as of the date of publication. Any additional information required to reanalyze the data reported in this paper is available

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Three male Rhesus macaques (Macaca mulatta, ages 7, 7 and 8 for monkeys J, N and L, respectively) were implanted with 96 elec-

trode arrays (Blackrock Microsystems) in the proximal arm region of the primary motor cortex. All animal care and handling proced-

ures conformed to the NIH Guidelines for the Care And Use of Laboratory Animals and were approved by the University of Pitts-

burgh’s Institutional Animal Care and Use Committee.

METHOD DETAILS

Experimental procedures
Experimental methods are detailed in our previous work.43,47 Briefly, we recorded neural activity (RZ2 system, TDT, Inc.) from three

male Rhesus macaques (Macaca mulatta, ages 7, 7 and 8 for monkeys J, N and L, respectively) using 96 electrode arrays (Blackrock

Microsystems) implanted in the proximal arm region of the primary motor cortex. The monkeys performed an eight-target center-out

BCI task. In the BCI, amonkey guided a computer cursor bymodulating its neural activity. The recorded neural activity was translated

into movements of the computer cursor according to a BCI map (see Translating neural activity to cursor movement). Each session

was split into three task periods, ‘‘Familiar Task 1’’, ‘‘New Task’’, and ‘‘Familiar Task 2’’. The animals performed the same center-out

BCI task in all three task periods. The only difference between task periods was the BCImap instantiated by the experimenter. During

Familiar Task 1, themonkey used the Familiar Map, whichwas selected to be intuitive for themonkey to use from the outset. Thismap

was found through a calibration period at the beginning of the day to identify the natural covariation between neural activity and in-

tended cursor velocity. Empirically, we find that this relationship changes little from day-to-day, and any changes appear to stem

from neural recording instabilities.88 The monkey controlled the cursor during Familiar Task 1 for 318.8 ± 95.4 (mean ± s.d.) trials.
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Uncued to the monkey, we then switched to the New Map for the second task period (New Task). The monkey had never seen the

NewMap before and it was selected in order to initially be difficult for the monkey to use to control the cursor. The monkey was given

696.7 ± 219.4 (mean ± s.d.) trials to learn to control the cursor with the NewMap. Finally, again uncued, the Familiar Map was rein-

stated (Familiar Task 2). The Familiar Task 2 period lasted the remainder of the experiment, 318.2 ± 153.9 (mean ± s.d.) trials.

Trial flow
At the start of each trial, the cursor appeared at the center of the monkey’s workspace. Target locations were selected pseudo-

randomly from a set of eight uniformly spaced locations around a circle (radius, Monkey J: 150 mm; Monkeys L and N: 125 mm).

The target appeared on the screen at the beginning of the trial. For the first 300 ms, the cursor’s velocity was fixed at zero. After

this, the velocity of the cursor was controlled by themonkey through the BCImap corresponding to the task period of the experiment.

If themonkeywas able to acquire the target within 7.5s after the start of the trial, a water reward was dispersed. If themonkey failed to

acquire the target within the allotted time, there was a 1.5s timeout prior to the start of the next trial.

Identifying latent dimensions of neural activity
Experiments began with a calibration period in order to define the Familiar Map. Monkey J’s calibration employed either passive

cursor observation or closed-loop BCI control using the previous day’s BCI map. For monkeys L and N, we used a calibration

procedure that gradually stepped from passive observation to closed-loop control. We then applied factor analysis (see below) to

identify the 10D linear subspace (the ‘‘intrinsic manifold’’) that captured the dimensions of greatest shared variance in the neural pop-

ulation. Ten dimensions was selected using cross-validation, as described in prior work.43

Spike counts (i.e. threshold crossings) were taken in nonoverlapping 45ms timewindows.Wedenote the spike counts at timestep t

as ut ˛Rq31, where q is the number of neural units. Factor analysis describes this high-dimensional population activity, ut, in terms of

a low-dimensional set of factors, zt ˛R1031. Latent factors, zt, are distributed as:

zt � Nð0; IÞ (Equation 1)

where I is the identity matrix. Spike counts, ut, are related to the factors by:

utjzt � NðLzt + m;JÞ (Equation 2)

where parameters L˛Rq310 (termed the loadingmatrix), m˛Rq31, andJ˛Rq3q (a diagonal matrix of variances independent to each

neuron) are estimated using the expectation-maximization algorithm. The latent factors at timestep t are estimated as the posterior

expectation given the spike counts:

bzt = LT
�
LLT +J

�� 1ðut � mÞ (Equation 3)

For all analyses, we orthonormalized bzt so that it had units of spike counts per timestep to facilitate the interpretability of the factor

activity. As the majority of the shared variance of the neural population is captured in these latent dimensions, and neural activity

cannot be readily produced outside this low-dimensional subspace during short-term learning,10,43 we focus our analyses on this

factor activity, referred to as ‘‘population activity patterns’’ throughout.

Translating neural activity to cursor movement
At each 45 ms timestep t, neural activity drove the computer cursor according to the BCI map for that task period. Specifically, the

cursor velocity was determined using a Kalman filter:

vt = Avt� 1 + Bbzt + c (Equation 4)

The parameters A˛R232, B˛R2310 and c˛R231 are determined during the calibration period,43 and vt ˛R231 comprises the hor-

izontal and vertical cursor velocities. The two BCI maps differ only in the B term. For the Familiar Map, B = Bfamiliar, which is found

during the calibration period. For the New Map, B = Bnew was a permutation applied to the columns of Bfamiliar, equivalent to

permuting the elements of bzt before applying Equation 4. This means that the New Map remained within the intrinsic manifold

(a ‘‘within-manifold perturbation’’). Thus the New Map changed the relationship between the factor activity and cursor velocity.

Full details of how the New Map was selected can be found in our previous work.43,47 In short, there are 10! = 3,628,800 unique

permutations that could be applied to a the Familiar Map to yield a the New Map, of which we selected just one per experiment. Our

aim was to select a the New Map that was difficult enough to induce learning, but not so difficult as to discourage the animal from

participating in the task. To inform this selection, we predicted the cursor velocities the animal would produce under each of the

candidate the New Map’s during the first 200 trials of Familiar Task 1 using:

v
ðpredÞ
t = Bnewbzt + c (Equation 5)

where v
ðpredÞ
t is the predicted velocity, and Bnew and c are the candidate parameters of the New Map. We then compared this to the

velocities produced by the same neural activity under the Familiar Map (see Figure S1).We used the difference in angle and speeds to

eliminate candidate the New Maps that are deemed too difficult or not difficult enough.47 In a typical experiment, approximately 50

candidate mappings satisfied all the requirements, and one was randomly selected for use in the experiment.
Current Biology 34, 1519–1531.e1–e4, April 8, 2024 e2
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QUANTIFICATION AND STATISTICAL ANALYSIS

The data analyzed in this study was part of a larger study that included both within-manifold perturbations (WMPs) and outside-mani-

fold perturbations (OMPs).43 As we have previously found that WMPs show stronger learning than OMPs, we only considered ses-

sions that used WMPs. Data from the Familiar Task 1 and New Task periods of these WMP sessions were analyzed in prior

work.36,47,49 Here we focused on neural activity recorded during Familiar Task 2, which has not been previously studied. To ensure

an adequate amount of Familiar Task 2 data to analyze per session, we only considered sessions that included at least 100 Familiar

Task 2 trials. This yielded a total of 43 sessions (Monkey J, 22 sessions, 362.6 ± 170.2 Familiar Task 2 trials; Monkey N, 12 sessions,

333.3 ± 107.3 Familiar Task 2 trials; Monkey L, 9 sessions, 171.0 ± 49.7 Familiar Task 2 trials; all values mean +/- s.d.).

Selecting experiments and trials for analysis
As our central question focuses on neural activity during proficient Familiar Task 2 performance, we restricted analyses of Familiar

Task 2 trials to after behavior had stabilized. To do this, we examined trials after at least 50 trials of Familiar Task 2 had elapsed (see

Figure 5). Unless stated otherwise, the remaining Familiar Task 2 trials are referred to as Familiar Task 2 throughout the manuscript.

Additionally, we only analyzed successful trials, as it is otherwise difficult to determine whether the monkey was engaged in the task.

Across all trials in all blocks, the success rates forMonkeys J, N and Lwere 79.6%+/- 11.5%, 84.3%+/- 15.2%and 76.1%+/- 16.9%

(mean ± s.d.), respectively.

On each trial, we discarded the first 90 ms (2 timesteps while the cursor’s velocity was fixed at zero) as the activity in M1 would not

yet reflect the target due to sensory processing delays.80 Additionally, because we report trial-averaged and target-averaged quan-

tities, we wanted to ensure neural activity came from instances in which themonkey needed to push the cursor in the same direction.

Thus, we only analyzed timesteps in which the angle between the cursor and the target was no greater than 22:5+ away from the

target direction for that trial. Performing our analyses without this exclusion criterion did not change our results qualitatively.

Even after learning to use the New Map, the monkeys generally exhibited lower performance with the New Map than the Familiar

Map (see Figure 1D). Thus, New Task trials tended to be longer than the Familiar Task 1 and Familiar Task 2 trials. To compare the

New Task trials to the Familiar Task 1 and Familiar Task 2 trials, we only utilized the first 25 timesteps from each trial. This number was

selected because it is approximately equal to the average Familiar Task 1 acquisition time across all monkeys.

Testing the reversion hypothesis
To measure tuning changes between task periods (Figure S3), we fit cosine tuning curves for each neural unit using ordinary least

squares regression:

lðqÞ = r0 + ðrmax � r0Þcosðq � qpdÞ
where lðqÞ is the estimated firing rate for a given cursor-target direction q. The parameters qpd, r0 and rmax can be interpreted as the

preferred direction, the average firing rate, and themaximum firing rate of the unit, respectively. For each neural unit, we fit a separate

tuning curve for each task period of the experiment.

We compared the preferred direction qpd for each neural unit between Familiar Task 1 and Familiar Task 2 by computing the

average absolute change in preferred direction (Figure S3C). To calculate the control distribution, for each neural unit, we randomly

permuted the task labels for each timestep during Familiar Task 1 and Familiar Task 2. The difference in preferred direction between

Familiar Task 1 and Familiar Task 2 was then recalculated using these new task labels.

To visualize how neural activity changes in the 10D latent space, we applied linear discriminant analysis to bzt, taken in 45ms time-

steps, in to order to find the 2D plane that best separates the activity from the three task periods (Figure 3A). We applied a QR decom-

position in order to orthonormalize the basis vectors found by LDA, then projected the neural activity onto this orthonormal basis.

To quantify the changes in population activity between Familiar Task 1 and Familiar Task 2, we calculated the Mahalanobis dis-

tance on a per-target basis between the population activity means across bzt, taken in 45ms timesteps, for each task period (Fig-

ure 3B). This distancewas computed in the 10D latent space, using the covariance of the Familiar Task 1 neural activity for that target.

To calculate the control distribution, for each target, we randomly permuted the task labels for each timestep during Familiar Task 1

and Familiar Task 2. TheMahalanobis distance between themean activity for each target was recalculated using the new task labels.

Defining the memory trace
Progress quantifies the appropriateness of a particular population activity pattern for a particular BCI map, i.e., the extent to which

that population activity pattern drives the cursor towards the target, and is computed as follows. First, we determine the neural push

of this activity pattern, bzt, through a particular map, B, as Bbzt. In Equation 4, A and c do not rely on the instantaneous neural activity,

and sowe do not consider the contributions from these terms. Next, we compute the component of this neural push in the direction of

the target. More specifically, for each timestep t, we define a unit vector, et ˛R231, pointing from the current location of the cursor to

the target. Thus, the progress at timestep t is evaluated as:

pt = eT
t Bbzt (Equation 6)

We sought to determine how much more appropriate neural activity is for the New Map during Familiar Task 2 than it is during

Familiar Task 1. We call this change in appropriateness a ‘‘memory trace’’ because it measures the lasting alteration of neural activity
e3 Current Biology 34, 1519–1531.e1–e4, April 8, 2024
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used during a familiar task (the Familiar Map) after a learning experience (the NewMap). Specifically, we define the memory trace as

the difference in progress when neural activity is passed through the New Map during Familiar Task 2 minus that during Familiar

Task 1. For each target, we average the progress per timestep across all trials. We obtain similar results if we first average within

a trial, then average across all trials to the given target.

Defining learning
We defined learning as how well the monkey performed with the NewMap after learning, relative to howwell it would have performed

with theNewMap if it continuedproducing thesameneural activity as it didduringFamiliar Task1 (i.e., if therewasno learning). Thus,we

defined learning as the difference in theNewMapprogress (seeDefining thememory trace for howprogress is computed) of the last 10

trials to a given target during theNewTaskminus the average theNewMapprogressof trials to that same target during Familiar Task 1.

Testing how Familiar Task 2 duration affects the memory trace
We sought to determine whether thememory trace persisted over time (Figures 5A and 5B). We considered the sessions in which the

Familiar Task 2 period was at least as long as the median length across all sessions (300 trials). This resulted in 22 sessions (14/22

sessions from Monkey J, average length of 464.36 ± 119.76 Familiar Task 2 trials; 8/12 sessions from Monkey N, 400.00 ± 53.45,

0/9 sessions fromMonkey L; all values aremean ± s.d.). In order to focus on trials where themonkey had longer exposure to Familiar

Task 2, we excluded the first 200 trials when calculating the memory trace, leaving at least 100 trials of Familiar Task 2 for analysis.

Testing how Familiar Task 2 behavior affects the memory trace
We additionally sought to determine whether the memory trace differed as a function of performance through the Familiar Map

(Figures 5C and 5D). To address this, we separated targets into two groups. Targets with acquisition times during Familiar Task 2

that were at least as good as Familiar Task 1 were placed in the ‘‘better behavior group’’ (see Figure S2E). There were 48 targets in

this group, with an average of 75.0 ± 57.7 ms (mean ± s.d.) faster target acquisition in Familiar Task 2 relative to Familiar Task 1.

Targets which had acquisition times during Familiar Task 2 that were worse than Familiar Task 1 were placed in the ‘‘worse behavior

group’’. There were 296 targets in this group, with an average of 241.3 ms ± 210.2 ms (mean ± s.d.) slower target acquisition in

Familiar Task 2 relative to Familiar Task 1.

Decomposing the memory trace into output-potent and output-null components
Inorder todeterminehowthememory tracecancoexistwithoutdegradingbehavioralperformanceduringFamiliarTask2,wewanted to

determine how changes in neural activity between Familiar Task 1 and Familiar Task 2 relate to the FamiliarMap. To address this ques-

tion, we decomposed neural activity into a component that is output-potent to the Familiar Map and a component that is output-null to

the Familiar Map (Figure 6). This decomposition was done by applying the singular value decomposition (SVD) to the Familiar Map:

Bfamiliar = UDVT (Equation 7)

where U˛R2310;D˛R10310, and V ˛R10310. D is a diagonal matrix, whose diagonal elements are the singular values of Bfamiliar. As

Bfamiliar is a matrix of rank two, only the first two diagonal entries of D are non-zero. This means that the first two columns of V form an

orthonormal basis for the output-potent space of Bfamiliar. We denote this basis as R˛R1032. The last 8 columns of V form an ortho-

normal basis of the output-null space of Bfamiliar. We denote this basis as N˛R1038.

We can find the component of neural activity potent to the Familiar Map as zpott = RRTbzt. Similarly, the null component is found as

znullt = NNTbzt. Both zpott and znullt are 1031 vectors, and have the property that bzt = zpott + znullt . We calculate the potent and null

component of the memory trace as before, except utilizing zpott and znullt for bzt respectively in Equation 4. This decomposition is uti-

lized in Figures 6 and S6. Note that this decomposition is performed with respect to the Familiar Map and not with respect to the New

Map. This is because, by definition, the memory trace must be in output-potent dimensions of the New Map, as those are the only

dimensions that determine the cursor velocity through the New Map.

Path of learning and washout
Todistinguishwhether thepathofwashout retraces thepathof learning (Figure7),wefirst define thepathof learningas thevector in10D

latent space from the mean activity during Familiar Task 1 to the mean activity during the late New Task period (see Selecting exper-

iments and trials foranalysis).Wesimilarlydefine thepathofwashout as the10Dvectorbetween themeanneural activityduring lateNew

Task and the mean activity during Familiar Task 2. We then compared the paths of learning and washout by finding the the angle be-

tween these twovectors. Toobtainacontrol distribution, foreach target,we randomlypermuted the task labels for each timestepduring

Familiar Task 1 andFamiliar Task 2. Thismimics a situation inwhich Familiar Task 1 and Familiar Task 2 activity patterns come from the

samedistribution.As task labels forNewTaskwerenot shuffled, thepathsof learningandwashoutwould thusbeequal andoppositeon

average under this construction. The angle between the paths for each target was recalculated using the new task labels.

Statistics
Unless otherwise noted, to test for statistical significance, we used nonparametric tests (for example, Wilcoxon signed-rank test or

ranked-sum test), which do not assume normality. All P-values less than 10� 10 were reported as P< 10� 10, regardless of how small

the P-value was.
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Figure S1: The Familiar Map and the New Map define different relation-
ships between neural population activity and cursor velocity (related to
Figure 1)
In order to investigate how learning a new task influences the neural activity used
to perform a familiar task, we employed a BCI paradigm in which a monkey con-
trolled the cursor with either a Familiar Map or a New Map. The BCI maps define
the relationship between neural activity and behavior (i.e., BCI cursor movements).
We first used factor analysis to identify the ten dimensions (referred to as “latent
dimensions”) that captured the greatest amount of shared variance (see Methods).
Each BCI map then defined the relationship between these latent dimensions and
cursor velocity. The Familiar Map was designed to be intuitive for the animals to
use, whereas the New Map permuted the relationship between latent dimensions and
cursor velocity. Note that these New Maps are called Within Manifold Perturbations,
or WMPs, in our previous work43,47. (a, b) Contribution of each latent dimension to
cursor velocity. The height of the bars indicates the values in the 2×10 matrix B in
equation 4 for the example session shown in (a)) and ((b). The contribution of each
latent dimension to cursor velocity is different between the Familiar Map and the
New Map (compare red and blue). Dimensions are ordered by the amount of shared
variance explained during the calibration period. (c) The average cursor velocities



produced to each target during Familiar Task 1 for each target under the Familiar
Map (open circles, velocities used online) and the New Map (closed circles, velocities
determined offline) for the example session shown in (a,b). Colors represent the
target direction, indicated by the dashed line of the corresponding color. Notice that
the velocities are highly accurate under the Familiar Map, as the Familiar Map is
designed to provide proficient control. By contrast, velocities are inaccurate under
the New Map because the monkey has not yet been exposed to the New Map. (d)
Principal angles between the row space of the matrix B in the Familiar Map and the
New Map. Star indicates the session shown in panels a, b and c.
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Figure S2: Changes in neural population activity do not necessarily lead
to changes in cursor velocity (related to Figure 2)
We recorded from approximately 90 neuronal units, corresponding to a 90 dimen-
sional space. Because this dimensionality is larger than that of the two dimensional
cursor velocity space (horizontal and vertical velocity), there are many different pop-
ulation activity patterns that lead to the same cursor velocity. In other words, there
can be changes in the neural activity produced that are not reflected as changes in
the cursor movements. (a) We illustrate how changes in neural population activity
can occur while maintaining the same cursor velocities using a simplified example,
where two neurons (corresponding to a two dimensional neural space) control a cursor
along a single dimension (either moving the cursor left or right). Population activity



that moves the cursor left is shown as a circle, and population activity that moves
the cursor right is shown with a square. The projection of the activity (dashed line)
onto the BCI Map (black line) dictates the cursor velocity. We might have expected
to find that the neural activity during Familiar Task 1 and Familiar Task 2 would be
the same (the reversion hypothesis, cf. Figure 2c). If this were the case, the light red
and dark red circles for move left would coincide (and similarly for the light red and
dark red squares for move right). We instead found that the neural activity during
Familiar Task 1 and Familiar Task 2 was different. This is shown as the light red and
dark red symbols not coinciding. Note that the projection onto the BCI map is the
same (dashed line) for both tasks. This can allow for the behavioral performance to
be the same for Familiar Task 1 and Familiar Task 2 despite different neural activity
being produced. The same is true for moving the cursor right during Familiar Task 1
and Familiar Task 2. (b and c) Tuning curves for the neurons shown in panel a. For
both neurons, the tuning curves for Familiar Task 1 and Familiar Task 2 are distinct.
See Figure S3, where we observed this effect in our motor cortical recordings. (d)
The cursor velocities corresponding to the activity shown in panel a. Despite the
change in tuning curves between Familiar Task 1 and Familiar Task 2, the neural ac-
tivity yields similar projections onto the BCI map, and thus similar cursor velocities
between the two tasks (cf. Figure 4b). This is possible because the dimensional-
ity of the neural space (in this case, two) is larger than the dimensionality of the
cursor movements (in this case, one). (e) Comparison of behavioral performance in
Familiar Task 1 and Familiar Task 2 for all experimental sessions. Here we plot the
average acquisition time for a given target during Familiar Task 1 against its average
acquisition time during Familiar Task 2. Performance in Familiar Task 2 tended to
be slower than in Familiar Task 1, likely due to satiation or fatigue. In Figure 5 and
Figure S5, we demonstrate that this difference in behavior is not the cause of the
memory trace, and instead that the memory trace tends to be larger when behavior
is better. The targets that fall below the diagonal are those in which performance
during Familiar Task 2 is better than during Familiar Task 1, defining the “better
behavior group” in Figure 5d. Dots are colored based on the experimental session.
There are 8 dots (corresponding to 8 targets) for each session.
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Figure S3: Population activity is distinct across all three tasks (related
to Figure 3)
(a) A view of the neural population activity for the same example target as in
Figure 3a. Rather than using LDA to identify the dimensions that best separate the
neural activity by task period, here we used factor analysis to identify the dimensions
which explain the greatest shared variance among neural units. Activity is projected
onto these two dimensions, with mean and covariances across timesteps shown. (b)
Tuning curves relating cursor-to-target direction to the firing rate for an example
neural unit (unit 37 from session L20131205). A cosine tuning curve was fit separately
for each of the three task periods. This unit changes its tuning (measured by a change
in preferred direction, ∆PD) between Familiar Task 1 and Familiar Task 2. Shading
indicates a 95% confidence interval. This is an example of a “memory II neuron”,
as defined by Li and colleagues5, where tuning is similar during Familiar Task 1 and
the New Task, yet changes during Familiar Task 2. (c) Many units show a change
in tuning between Familiar Task 1 and Familiar Task 2 (P < 10−10, two-sided paired
Wilcoxon signed-rank test, n = 3461 neural units). Black shows the absolute change
in preferred direction for units across all sessions. Grey indicates the prediction of
the reversion hypothesis (that is, no change in PD other than that due to sampling
error). This was estimated using a shuffle control in which labels for Familiar Task
1 and Familiar Task 2 were randomly permuted across trials (see Methods).
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Figure S4: Learning leads to a memory trace (related to Figure 4)
(a) Same format as Figure 4a-c, but using neural activity from the New Task rather
than Familiar Tasks 1 and 2. Two example trials during the New Task, where the
New Map dictates how the cursor moves (blue path), with velocities through the
Familiar Map indicated (red arrows). During the early New Task trial (top), the
cursor takes a circuitous path to get to the target, yet the red arrows tend to point
toward the target. This indicates that the monkey is attempting to control the
cursor under the assumption that the Familiar Map is still in use. Consequently, the
monkey needs to modify the neural activity it generates to move the cursor straight
to the target under the New Map. Over the course of New Task, cursor trajectories
typically get straighter as the monkey learns to control the cursor with the New
Map (blue path), as illustrated in the example Late New Task trial (bottom). As in
Figure 4, these trials come from the 225 degree target from session N20160329. (b)
Progress through the Familiar Map during all three tasks for the example target.

(c) Progress through the New Map during all three tasks for the example target.
Learning is indicated by progress during the New Task (blue) being greater than the
progress during Familiar Task 1 (light red). Learning is indicated by progress during
the New Task (blue) being greater than the progress during Familiar Task 1 (light
red). In panels b and c, the histograms for Familiar Tasks 1 and 2 are identical
to those shown in Figure 4b-c, respectively. (d) Controlling the BCI cursor does
not involve different neural subpopulations for each map. We wondered whether
a memory trace of the New Map is maintained because a separate population of
neurons is used to control the cursor through the New Map than is used to control
the cursor through the Familiar Map. We found that this was not the case. To
test this, we ranked the modulation depth of each neural unit within an experiment,
where modulation depth is defined as the difference between the largest and smallest
average firing rates across targets. The neural unit with the highest modulation
depth is given rank 1, the second highest receives rank 2, and so on. If it were the
case that different neural subpopulations were employed under each BCI map, then
we would expect the data to lie along the horizontal and vertical axes. Instead, we
found that the neural units were similarly modulated across the two tasks (one-sided
F test, n = 94 neurons from experimental session N2016014, P < 10−10). Each dot
corresponds to one neural unit and the dashed line denotes the unity diagonal (i.e.,
same rank during both tasks). Results were similar for all experimental sessions. (e)
The amount of learning positively correlates with the size of the memory trace. To
demonstrate the relationship between the memory trace sizes of various targets in
a single session, we present the same data as in Figure 4f, but with distinct colors
representing each individual session. There are 8 dots (corresponding to 8 targets) for
each session. (f) A memory trace is also evident when measured using angular error.
In Figure 4d-f, we measured the memory trace using “progress”, which is defined
as the velocity by which a population activity pattern would have moved the cursor
toward the target (see Methods). We could have alternatively measured the memory
trace in terms of angular error instead of progress. In contrast to progress which
depends on velocity magnitude and direction, angular error depends only on the



velocity direction. Angular error is defined at each timestep as the angular difference
between the velocity vector of the neural push and the cursor-to-target direction. As
with progress, the velocity of the neural push is defined using the Familiar Task
1 (or Familiar Task 2) neural activity projected through the New Map. We then
compute the angular error for Familiar Task 1 minus the angular error for Familiar
Task 2. We use unsigned angular error so clockwise and counterclockwise errors do
not cancel each other out when averaging. Smaller angular errors indicate that the
neural activity is more appropriate for the BCI map (in this case, the New Map).
Thus, when angular error is smaller for Familiar Task 2 relative to Familiar Task 1,
a memory trace is present (Monkey J, P = 1.45 × 10−7, two-sided paired Wilcoxon
sign-rank test, n = 176 targets; Monkey N, P = 4.68 × 10−6, n = 96; Monkey L
P = 0.81, n = 72 targets).



Better Behavior

M
em

or
y 

T
ra

ce

Possibility 1: Tradeoff
(Negative correlation)

Possibility 2: Coexistence
(No correlation)

Possibility 3: Synergy
(Positive correlation)

0.0−0.5−1.0
−40

−20

0

20

40

M
em

or
y 

T
ra

ce
 (

m
m

/s
) Monkey N

n.s.

0.0−0.5−1.0
−40

−20

0

20

40
M

em
or

y 
T

ra
ce

 (
m

m
/s

) Monkey L

n.s.

A

0.0−0.5−1.0
−40

−20

0

20

40

M
em

or
y 

T
ra

ce
 (

m
m

/s
) Monkey J

n.s.

C

M
em

or
y 

T
ra

ce
 (

m
m

/s
)

0 100 200 300 400 500 600 700

−10

0

10

20
Monkey J (Sessions 12 - 22)

0 100 200 300 400 500 600 700

−10

0

10

20
Monkey N (12 Sessions)

0 100 200 300 400 500 600 700

−10

0

10

20
Monkey L (9 Sessions)

0 100 200 300 400 500 600 700

−10

0

10

20
Monkey J (Sessions 1-11)

One Session

Familiar Task 2 Trial Number

B

Δ Acq. Time (s)
Better during Familar Task 2



Figure S5: The memory trace persists and coexists with proficient behav-
ior (related to Figure 5)
(a) The memory trace persists for the duration of Familiar Task 2. We computed
the average memory trace for each trial by calculating the difference between the
average progress through the New Map during that specific Familiar Task 2 trial
and the average progress through the New Map during all Familiar Task 1 trials
for the same target. For visual clarity, we then applied a centered 40-trial boxcar
moving average to smooth the resulting values. Incorrect trials were included in
the Familiar Task 2 trial number, but did not contribute to the average. Monkey
J sessions are split across two panels for visualization purposes. Most trials had an
average memory trace greater than 0 mm/s (Monkey J, P < 10−10, one-sided bino-
mial test, n = 6883 trials, 4258 successes, applied to unsmoothed data; Monkey N,
P < 10−10, n = 3510 trials, 2328 successes; Monkey L, P = 0.0086, n = 1129 trials,
605 successes). (b) The memory trace coexists with proficient behavior. We sought
to examine the relationship between the memory trace and behavior in greater detail
than in Figure 5c-d. Here we consider a continuous-valued measurement of behavior,
rather than grouping the targets based on “better behavior” and “worse behavior”.
There are three possible relationships between the size of the memory trace and the
behavioral performance during Familiar Task 2. The first possibility is that there
is a trade-off, meaning that when the memory trace is large, behavior is poor. The
second possibility is that there is no relationship between the memory trace and
behavior. This means that there can be a large (or small) memory trace, regardless
of the behavioral performance during Familiar Task 2. The third possibility is that
the memory trace and behavioral performance are positively correlated. This means
that better performance coincides with a larger memory trace. (c) Our data support
the second possibility, that there is not a correlation between behavior and memory
trace size (Monkey J, R2 = 0.024, P = 0.75, one-sided F test, n = 176 targets; Mon-
key N, R2 = 0.021, P = 0.16, n = 96; Monkey L, R2 = 0.048, P = 0.063, n = 72).
∆ acquisition time is the target acquisition time during Familiar Task 1 relative to
Familiar Task 2, with larger values corresponding to quicker target acquisition during
Familiar Task 2. This corresponds to the distance from the diagonal in Figure S2e.
Each dot represents one target. Note that the slight positive correlation is in the
opposite direction of the trade-off possibility.
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Figure S6: The majority of the memory trace resides in dimensions
output-null to the Familiar Map (related to Figure 6)
(a) To understand which dimensions of neural activity contribute to the memory
trace, we decomposed neural activity into components that are output-potent and
output-null to the Familiar Map and evaluated their contribution to the memory
trace (Figure 6). Here, we break down Figure 6 by target. Targets across all sessions
and monkeys are ordered by the total memory trace expressed for that target (black
line). The contributions by the potent and null spaces of the Familiar Map are shown
in purple and magenta, respectively. As the total memory trace is the sum of the
contributions from the output-potent and output-null components, it is possible for
one of these components to have a negative contribution and the total memory trace
to still be positive. A negative value indicates progress through the New Map is
smaller during Familiar Task 2 relative to Familiar Task 1 for that component. For
visual clarity, we use dark shading for positive values and light shading for negative
values. For a given target, there is one purple bar (light or dark) and one magenta
bar (light or dark). We find the majority of the memory trace resides in dimensions
output-null to the Familiar Map (magenta bars tend to be larger than purple bars),
as quantified in Figure 6. (b) The size of the memory trace is not correlated with



the angle between the Familiar Map and the New Map. We wondered whether the
variation in the size of the memory trace could be explained by the geometry of the
BCI mappings. We thus examined whether the size of the memory trace was corre-
lated with the first principal angle between the Familiar Map and the New Map. We
found that the first principal angle between the Familiar Map and the New Map is
not correlated with the size of the memory trace (R2 = 0.0007, P = 0.8690, one-sided
F test, n = 43 sessions). Note that the principal angle between the BCI maps is a
property of the experimental session, and not specific to each individual target. We
thus examined the relationship between the principal angle and the average memory
trace across all 8 targets per session.
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